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ABSTRACT 

 

Still and Morris (2008) discovered that nonword anagram primes interfere with word target 

processing when the letters in the prime appear in reverse order of the letters in the target 

(e.g., yruf - FURY). This finding was unexpected as facilitation is typically found when a 

word target is preceded by an orthographically similar nonword prime (e.g., Grainger & 

Jacobs, 1999). The present study was designed to replicate and extend Still and Morris’ 

finding of anagram interference. Results across three experiments indicate that anagram 

interference is modulated by target word frequency, stimulus length, prime exposure 

duration, and whether or not the anagram prime and target share letters in the same relative 

positions (e.g., enorht vs. oetnrh vs. htoren for the target THRONE). In addition to 

replicating the finding of anagram interference, these results show that the anagram 

interference is robust and is not limited to a specific set of stimuli. Current models of word 

recognition are unable to account for the finding of anagram interference.  
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CHAPTER 1. INTRODUCTION 

 

 Much of the research in visual word recognition has focused on two related topics: 1) 

the representations involved in word recognition and 2) the process by which these 

representations are accessed. Recently, these topics have been addressed in studies 

investigating the way in which letter position is coded during word recognition. In these 

studies, the underlying representations and processes involved in word recognition are 

inferred from the effects of letter position manipulations on participant responses. A task 

commonly used in these investigations is masked orthographic priming, where one masked 

and briefly displayed item (prime) is followed by a second item (target) to which the 

participant responds. It is assumed in many theories of word recognition that presentation of 

a prime will lead to the activation of all word representations that are similar to the prime 

(Davis & Lupker, 2006). Preactivation of a representation by a similar prime affects the 

speed and accuracy of participant responses to the target. For example, the prime juhge is 

assumed to activate the representation for the target JUDGE; in this case, participants will 

respond faster because target processing has a “head-start” in comparison to a target that has 

not been preactivated. 

 When masked orthographic priming is used to study letter position it is assumed that 

a prime will more strongly preactivate a target representation when there is a better “match” 

between their respective letter positions. A measure of how well the representations “match” 

is obtained by comparing responses to a target when it has been primed by an item that is 

dissimilar to the target (usually a prime that shares no letters with the target) to responses 

when a prime is similar to the target. The difference in response time yields a measure of the 

target representation’s preactivation in the orthographically similar condition – a measure of 
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the orthographic priming effect. By comparing priming effects across several conditions, 

hypotheses can be formed about the representations involved in masked orthographic 

priming and, potentially, word recognition.      

 There is now an abundance of data suggesting that the representations involved in 

orthographic priming do not code letters in their absolute positions; instead, letter positions 

are coarsely coded (e.g., Grainger, Granier, Farioli, Van Assche, & van Heuven, 2006; Perea 

& Lupker, 2003; Peressotti & Grainger, 1999). The “coarseness” of letter position coding is 

constrained by the finding that facilitation is observed only when the letters shared between 

the prime and target appear in the same relative positions (i.e., in the same left-to-right 

order). This characteristic of the orthographic priming effect comes primarily from 

experiments using partial-word primes (e.g., FLCN– FALCON; Peressotti & Grainger, 1999). 

Facilitation is obtained only when relative letter position is preserved; no facilitation is 

obtained when the letters in the prime appear in a different left-to-right order than those in 

the target (e.g., FCLN – FALCON; Grainger et al., 2006; Peressotti & Grainger, 1999).   

 Although data from several studies suggest that some preservation of letter position is 

necessary to access any given word representation, this assertion has not been adequately 

tested, because in the majority of studies, letter position is only partially disrupted between 

the prime and target. For example, it is common for a proportion of the letters in the prime 

and target to appear in the same absolute position, or for at least some of the letters in the 

prime and target to appear in the same relative positions (e.g., the F and N in FCLN; 

Peressotti & Grainger, 1999). There are few, if any, experimental investigations of conditions 

where the prime and target share letters, but those letters do not appear in the same absolute 

or relative positions. This gap in the literature leaves little opportunity to falsify the 
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assumption that letters must appear in the correct relative position to activate a word 

representation. The importance of this oversight was recently revealed when Still and Morris 

(2008) found interference (slower response times) when all letters were shared between the 

prime and target, but none of those letters appeared in the same absolute position or in the 

same relative positions (e.g., yruf – FURY). This interference is not easily explained by 

existing models of word recognition. The purpose of this study is to further investigate the 

origins of Still and Morris’ anagram interference finding as it suggests that modifications 

must be made to current assumptions about word representations and the way in which those 

representations are selected.  

The Interactive Activation Model   

 One of the first models to formally implement a system for coding letter position was 

the Interactive Activation (IA) model (McClelland & Rumelhart, 1981; Rumelhart & 

McClelland, 1982). Even though the IA model was proposed over twenty years ago, many 

subsequent models have adopted the IA framework (e.g., Dual-Route Cascaded model, 

Coltheart, Rastle, Perry, Ziegler, & Langdon, 2001; Multiple Read-Out model, Grainger & 

Jacobs, 1996) or have adopted IA assumptions. For example, one assumption adopted by 

several researchers is that inhibitory connections exist between word representations (e.g., 

Open-Bigram model, Grainger & van Heuven, 2004; Self-Organizing Lexical Acquisition 

and Recognition [SOLAR] model, Davis, 1999). In addition, most studies investigating letter 

position coding test the assumptions of the IA model. Therefore, it is important to understand 

how the IA model works. 

 The IA model has three levels of representation that are used in word recognition: 

feature, letter, and word. Bidirectional excitatory and inhibitory connections exist between 
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each level and inhibitory connections exist between items within a level (e.g., between two 

word nodes). Because the original IA model was implemented using four-letter words, the 

model contains four “slots” – one slot for each letter. Each slot has its own feature detectors 

and letter representations. When a letter string is presented to the model, feature detectors are 

activated for the features present in each individual letter of the stimulus. For example, when 

presented with the word head, feature detectors in the first slot would become active for 

features found in the letter h (e.g., long vertical line on the left, short vertical line on the 

right, short horizontal connector). In addition, features not found in the letter h would be 

suppressed. Each of the activated feature nodes then spreads activation to the letter level; 

those letter nodes having excitatory connections with the activated feature node (i.e., letters 

containing that feature) become activated while those having inhibitory connections with the 

activated feature node (i.e., letters without the feature) are inhibited. If the letter h is activated 

in the first slot, all other letters will be inhibited (the IA model does not misidentify letters 

because the inhibitory connections from the feature to letter level are stronger than the 

excitatory connections between the levels). Letter and feature node activation occurs 

independently and simultaneously for each slot.       

 Once a letter node is activated, it spreads activation to the word level. Specifically, all 

word nodes containing that letter in that specific slot are activated via excitatory connections. 

Words not containing the letter in that slot are inhibited. For example, the letter h in the first 

slot will activate head but will inhibit shin. In addition to the connections between the letter 

and word levels, inhibitory connections exist between nodes in the word level. Once a word 

node becomes activated it inhibits other word nodes, with the amount of inhibition being 

relative to the node’s activation level; thus, a word node with a high activation level will 
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strongly inhibit other word nodes, while a node with a lower activation level will weakly 

inhibit other nodes. Lexical inhibition allows the model to “settle” on a solution more 

quickly.  

 The processing of a letter string from feature-to-letter-to-word levels represents only 

a subset of the processes in the IA model; the connections between the levels are 

bidirectional, thus there are top-down influences in the model as well. Top-down influences 

are modeled in such a way that if a node at the letter or word level becomes activated, it 

sends recurrent activation (inhibition or excitation) back down to the nodes feeding into it.
1
 

For example, when the word representation for head becomes activated, additional excitatory 

activation is sent to the h in slot 1, the e in slot 2, the a in slot 3, and the d in slot 4. In 

addition to increasing the activation levels for each letter node, this recurrent activation 

results in more bottom-up activation from each letter node being passed on to the word level. 

Recurrent activation decreases the time needed for a word representation to be selected in the 

model.  

 As previously mentioned, the majority of studies have used masked priming 

paradigms to test predictions about the way in which letter positions are coded in word 

representations. The IA model by itself cannot be used to make predictions about the 

outcome of masked priming experiments because the model only processes one stimulus at a 

time. Additional assumptions must be made about the way the prime and target interact in the 

IA model. Those assumptions are addressed in the following section – “Masked 

Orthographic Priming”. A second consideration is how well the IA model accounts for letter 

                                                 
1
 Parameters control the amount of inhibition and excitation between nodes within the same levels and nodes in 

different levels. This means that ten parameters control inhibition and excitation and they can vary widely in 

their settings. For example, in the original instantiation of the IA model there was no letter–to–letter inhibition, 

but word–to–word inhibition was high. 
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position effects obtained in masked priming experiments. In the “Evidence for Relative 

Position Coding” section, recent studies demonstrating the shortcomings of the IA model 

letter coding scheme are discussed. These studies motivated the development of several new 

models of word recognition that use alternative coding schemes; they are discussed in 

“Models of Word Recognition that Account for Relative Position Priming”. Even with new 

letter position coding schemes, recent models of word recognition cannot account for Still 

and Morris’ (2008) interference findings (e.g., elba interferes with lexical decisions to 

ABLE). These findings are presented in the “Determining the Contributions of Letters and 

Bigrams to Orthographic Priming” section.  

Masked Orthographic Priming 

 One experimental method has come to dominate the field of word recognition 

research – the masked priming paradigm (Grainger, 2008). Forster and Davis (1984) were the 

first to popularize this procedure in conjunction with the lexical decision task. “Three-field” 

masked priming paradigms are characterized by the presentation of a mask, then a briefly 

displayed prime that is followed by a target.
2
 The type of response required of the participant 

(e.g., lexical decision, naming, semantic categorization) can be varied. Target presentation 

also can be varied. For example, in most lexical decision tasks the target is displayed until the 

participant responds, but in perceptual identification tasks the target is briefly displayed and 

masked. Masked orthographic priming has become a preferred method of investigation for 

two primary reasons. First, the prime is briefly displayed, limiting participant awareness of 

the prime and reducing strategic effects (Forster, 1998). Second, priming paradigms allow 

                                                 
2
 Forster and Davis (1984) used a word that was dissimilar from the prime and target as the forward mask. In 

subsequent experiments it has become more common to use symbol strings as the mask. 
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researchers to use within-item manipulations so that participant responses to any given target 

(e.g., ABLE) can be compared across conditions (e.g., axle-ABLE vs. host-ABLE; Davis, 

2003). For non-priming tasks in which participants respond to the presentation of a single 

word, researchers must compare responses to different items; for example, when 

investigating the effects of word frequency, one might compare report of AXLE, a low-

frequency word, to report of ABLE, a high-frequency word.
3
 The problem is that these words 

do not differ only in word frequency; for instance, AXLE has higher imageability than ABLE. 

If differences are found in responses to these words, should they be attributed to word 

frequency or imageability? In short, when comparisons are made between items, it is more 

difficult to know what variables are responsible for the differences. By comparing responses 

to the same target, as can be done in the priming paradigm, this problem is reduced (Forster, 

1998).  

 Interpretation of data obtained in the priming paradigm depends on the assumption 

that the representation of a target can be preactivated by an orthographically similar prime. In 

the IA model this is simulated by limiting the number of cycles that the prime is presented so 

that the model does not “settle” on one solution (it is important that the model does not settle 

on one solution because that would results in a reset of letter level activation). Brief display 

of the prime results in the partial activation of candidate word representations that share 

letters in the same position with the prime. The target is then presented to the model; 

processing of the target begins from the state it was in when the prime was replaced with the 

target. Therefore, the IA model treats the prime and target as one event. Preactivation of 

                                                 
3
 Word frequency is usually obtained from a database. It is calculated by counting the number of times a word 

appears in print from a corpus of documents.  
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word representations by the prime has two possible outcomes: facilitation (faster or more 

accurate responding or both) or interference (slower or less accurate responding or both).
4
 

Facilitation is thought to occur when the prime preactivates the word representation of the 

target but does not strongly activate other word representations. Interference is thought to 

occur when the prime preactivates the word representation of the target and strongly 

activates at least one other word representation; the interference occurs because the target 

cannot be recognized until the other activated word representations have been inhibited.  

  In the masked priming literature, several variables influence the orthographic priming 

effect, including prime lexicality and relative prime – target word frequency. Models that 

share basic assumptions with the IA model can account for masked priming data with a few 

exceptions, as will be described. The lexical status of the prime is one variable that 

contributes to whether orthographic priming – preactivation of the word representation – 

results in facilitation or interference. In particular, nonword primes tend to lead to facilitation 

while word primes tend to lead to interference; this is referred to as the lexicality effect 

(Grainger & Jacobs, 1999). The lexicality effect is explained by the assumption that nonword 

primes do not strongly activate any word representations, thus the processing of the target is 

facilitated from the “head start” provided by the prime. In contrast, when a word prime is 

presented, it activates its own word representation which will inhibit other similar word 

representations (selective lexical inhibition, Davis & Lupker, 2006). Before the target can be 

recognized, it must overcome the inhibition from the prime; this results in interference. An 

exception to the lexicality effect occurs when the word prime and target are identical and, 

                                                 
4
 In this dissertation inhibition refers to the theoretical construct suggesting that one node can suppress another. 

In contrast, the term interference describes behavioral outcomes, e.g., slower response times or increased error 

rates or both.   
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therefore, activate the same word representation (e.g., Forster & Davis, 1984; Perea & 

Lupker, 2003). In this case no competing word representations are activated and facilitation 

is observed. It should be noted that although the lexicality effect is typically found, a few 

experiments have yielded contradictory results. For example, facilitation has been found for 

word primes and targets that are orthographic neighbors (e.g., irrigate – IRRITATE; Forster, 

1987) – orthographic neighbors are items that share all their letters in the same positions 

except for one. In addition, Still and Morris (2008) obtained interference for word targets 

preceded by anagram nonword primes. There are two reasons why this finding is not 

predicted by current models of word recognition. First, the only inhibitory effects that can 

lead to interference in participant responses come from the inhibitory connections between 

word representations. Second, nonwords do not have word representations, thus they cannot 

inhibit word representations. Models of word recognition that assume lexical inhibition is the 

only source of interference have difficulty reconciling these findings.  

 Orthographic priming effects are also modulated by word frequency. According to the 

IA model, high-frequency words have a higher level of resting activation than low-frequency 

words (McClelland & Rumelhart, 1981). This higher level of activation allows the model to 

settle on high-frequency words faster and with fewer errors than low-frequency words. In the 

masked priming paradigm when word primes and targets are used, the relative word 

frequency of the prime and target affects the amount of interference obtained. In particular, 

interference is greater when the prime is higher-frequency than the target (e.g., Davis, 2003; 

Davis & Lupker, 2006; Segui & Grainger, 1990). This finding is easily accounted for by the 

IA model (McClelland & Rumelhart, 1981). In masked priming experiments the higher-
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frequency prime inhibits the word representation of the lower-frequency target more than a 

lower-frequency prime inhibits a higher-frequency target.  

 But, the generalizability of relative prime – target word frequency findings has 

recently come into question. Nakayama, Sears, and Lupker (2008) conducted a series of 

experiments in which they manipulated relative prime-target frequency and neighborhood 

size (a word with many orthographic neighbors is described as being from a high-density 

neighborhood, while a word with few neighbors is from a low-density neighborhood). Primes 

and targets were words, so interference was expected and greater interference was expected 

when the prime was higher-frequency than the target. Nakayama et al. demonstrated that 

when the word stimuli were from high-density neighborhoods, no relative prime-target 

frequency effect was found; that is, high-frequency targets preceded by low-frequency 

primes resulted in interference that was statistically indistinguishable from the interference 

obtained when low-frequency targets were preceded by high-frequency primes. When stimuli 

from low-density neighborhoods were used, more interference was obtained when targets 

were lower-frequency than the primes compared to when targets were higher-frequency than 

the primes as is consistent with previous research (e.g., Segui & Grainger, 1990). The IA 

model does not predict this pattern of results. Instead, it predicts that relative prime-target 

frequency should yield the same amount of interference no matter the neighborhood density 

(e.g., Davis, 2003).  

 In contrast to the relative prime-target frequency effects obtained with word primes, 

the IA model predicts that target word frequency “has a negligible effect” on the facilitation 

obtained when nonword primes are used (Davis & Lupker, 2006, p.674). In the model, 

nonword primes preactivate word target representations via excitatory connections between 
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the letter and word levels. That “bottom up” activation does not vary for low- vs. high-

frequency word representations. Therefore, low- and high-frequency targets should benefit 

equally from preactivation by orthographically similar nonword primes.    

 Despite this prediction, there are reasons to hypothesize that target word frequency 

could have some effect on the amount of facilitation obtained in masked priming 

experiments. First, although the difference in facilitation only approached significance, Davis 

and Lupker (2006) found that facilitation for low-frequency targets was numerically greater 

than that for high-frequency targets. Thus, it is possible that target frequency is related to the 

amount of facilitation obtained, but those differences are small. Second, it is possible that the 

average speed with which a participant can respond to low- vs. high-frequency targets 

modulates the amount of facilitation that is observed. It is well known that high-frequency 

targets are responded to faster and more accurately than low-frequency targets and that there 

is a limit to how fast and accurate responding can be. When participant responses are already 

fast and accurate, there is less opportunity for improvement. By extension, when high-

frequency targets are preactivated by an orthographically similar nonword, there is less 

opportunity for improvement than when low-frequency targets are used. In other words, if 

there is any effect of target word frequency it should emerge as greater facilitation for low-

frequency targets than for high-frequency targets (much like the trend observed by Davis and 

Lupker).  

An Alternative Conceptualization of Masked Priming 

 The IA model was originally developed to account for findings associated with the 

word superiority effect whereby a single letter string is briefly presented and participants 

indicate which of two letters was displayed in a specified position in the letter string (e.g., 
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McClelland & Rumelhart, 1981). In order to use the IA model to make predictions about the 

outcome of masked priming studies, where two items rather than one are presented, some 

assumptions must be made. The fundamental assumption is that activation from the prime 

and target is integrated; that is, the prime and target are treated as if only one item was 

presented. But should two events – the prime and target – be treated as one? The Competition 

Model (Morris, Still, & Caldwell-Harris, 2009) was designed specifically to account for the 

interactions between identical or orthographically similar items presented in close temporal 

proximity. According to the tenets of this model, even though participants often are unaware 

of the prime, it still competes as a separate event for access to awareness.
5
 The competition 

model operates under four primary assumptions: 1) items presented in close temporal 

proximity compete with one another for access to awareness (Dehaene & Naccache, 2001); 

2) competition is based on the total activation of each item; 3) the activation of each item is 

composed of activation of its own representation and persisting activation from the item(s) 

presented before it (i.e., forward masking; Breitmeyer, 1984; Desimone, 1996); and 4) 

repetition of letters, or orthographic similarity, between two items leads to an increased 

signal-to-noise ratio for the second item along with lower overall activation levels (e.g., 

Desimone, 1996; Ringo, 1996). The implications of these assumptions and how they relate to 

masked orthographic priming follow. 

 As mentioned, in the competition model the prime and target are treated as two 

separate events competing for access to awareness. Competitiveness of an item depends on 

several variables including prime lexicality, word frequency, exposure duration, 

                                                 
5
 An exception would be if two physically identical stimuli were presented successively with no break between 

them. In this case, the two stimuli would appear to be one continuous stimulus. This situation is uncommon as 

computerized experiments tend to have a refresh cycle between presentation of the prime and target.   
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neighborhood density and orthographic similarity (e.g., Morris & Still, 2008; Still & Morris, 

2007). To determine the way in which word frequency, lexicality, exposure duration, and 

neighborhood density affect the competition, a general heuristic can be used: If a stimulus 

characteristic leads to increased identification, then that characteristic usually indicates 

increased competitiveness for that item.  For example, items with longer exposure durations 

outperform items with shorter exposure durations, items from high-density neighborhoods 

outperform those from low-density neighborhoods, words outperform nonwords, and high-

frequency words outperform low-frequency words. In the competition model, each of these 

stimulus characteristics is modeled as higher activation levels for items containing these 

characteristics. What is assumed here is that these stimulus characteristics influence the 

speed and accuracy with which an item is processed or encoded.  

 According to the competition model, each event in the masked priming paradigm 

(mask, prime, and target) competes with temporally adjacent items for access to awareness. 

The briefly-displayed prime often fails to access awareness because its activation is exceeded 

by that of both the mask and the target.  In contrast, the target always accesses awareness 

because it is displayed until the participant responds; what varies is how quickly the target’s 

activation exceeds that of the prime. The question is whether an orthographically similar 

prime facilitates recognition of the target or hinders it. As mentioned, orthographic similarity 

between prime and target leads to an increased signal-to-noise ratio for the target, which in 

turn increases the speed of target identification; however, the presence of an orthographically 

similar prime also can decrease the overall activation associated with the target, reducing its 

ability to compete with the prime (the latter effect occurs because of the decrease in noise 

associated with the similar target). The encoding characteristics of the prime also influence 
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the outcome of the competition; primes that are poorly encoded (e.g., short prime exposure 

durations, nonword primes) compete minimally with the target while primes that are better 

encoded (e.g., longer prime exposure durations, word primes) compete more with the target. 

Thus, the outcome depends on whether or not the increase in the signal-to-noise ratio is 

outweighed by the decrease in the target’s total activation. Nonword primes tend to produce 

facilitation because they decrease the target’s activation only minimally, whereas word 

primes tend to produce interference (the lexicality effect).  

 Encoding of the prime and target largely contributes to whether or not orthographic 

similarity will result in facilitation or interference. Figure 1 provides a summary of the 

effects of encoding. The function in Figure 1 represents the difference between the outcome 

of the competition for an orthographically similar prime and target and a control prime and 

target. When a point on the function is greater than zero, facilitation is observed; when a 

point on the function is less than zero, interference is observed. The x-axis represents a 

general continuum for encoding with poor encoding on the left and better encoding on the 

right. When encoding is poor, facilitation is more likely to occur; when encoding is better, 

interference is more likely to occur. This function will be used as an aid for describing how 

the variables investigated in the present experiments could be conceptualized as encoding 

effects within the competition model. 

 One drawback to using the competition model to predict masked priming results is 

that it was not designed to investigate letter position coding. The original implementation of 

the competition model used a position independent coding scheme such that the model could 

not distinguish between items like stop and otps. What this means is that the competition 
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Figure 1. General function depicting the influence of encoding on competitive outcomes for 

the target. The function itself represents the difference between orthographically similar and 

control conditions as predicted by the competition model. Competitive outcomes greater than 

zero reflect facilitation while competitive interactions less than zero reflect interference. 

Encoding is a continuous variable that is related to the signal-to-noise ratio of a 

representation in the competition model.     

 

model, in its original form, cannot account for why presentation of the prime stop facilitates 

recognition of the target STOP, but presentation of the prime pots does not. Therefore, 

although the original version of the competition model provides some insight as to how 

encoding variables affect the interaction between the prime and target, it cannot generate 

precise predictions concerning letter position coding.         

Evidence for Relative Position Coding  

 Like that of the competition model, the letter coding scheme of the IA model is 

inadequate. The IA model’s slot-position coding scheme has been tested extensively in recent 

years using the masked orthographic priming paradigm. These examinations have been 

conducted primarily by manipulating the positions of the letters shared between the prime 

and target. For example, Perea and Lupker (2003) found that facilitation obtained from a 
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word primed by itself (identity priming; judge – JUDGE) was indistinguishable from the 

amount of facilitation obtained when a word was primed by a transposition neighbor – a 

word that shares all letters with the target, but two letters are transposed (jugde – JUDGE). In 

comparison, Perea, Duñabeitia, and Carreiras (2008) demonstrated that transpositions of 

nonadjacent letters (caniso – CASINO) result in less facilitation than transpositions of 

adjacent letters. Together, these findings are used as evidence that word representations are 

insensitive to small disruptions in letter position, but sensitive to larger disruptions in letter 

position under data-limited conditions. Transposed-letter priming is problematic for the IA 

model coding scheme; according to the model, the primes jugde and juhpe are equally similar 

to the target JUDGE because both primes share three letters in the same position with the 

target. Contrary to those predictions, the prime jugde led to more facilitation than the prime 

juhpe.   

 Another method of testing the IA model letter coding scheme is by preserving the 

relative positions (same left to right order) of some of the letters between the prime and the 

target, but manipulating the absolute positions in which those letters appear. Peressotti and 

Grainger (1999) investigated this by comparing conditions where primes and targets shared 

letters in the same absolute positions to conditions where primes shared letters in the same 

relative positions with targets. In their Experiment 4, primes were presented that contained 

the first, third, fourth, and sixth letters of the six-letter target (partial-word primes), but the 

absolute position of the letters was varied. In one condition letters in the prime appeared in 

the same relative position (e.g., FLCN – FALCON). In two additional conditions the letters in 

the prime appeared in the same absolute position as the target but symbols were inserted in 

place of letters two and five (e.g., F–LC–N – FALCON and F%LC%N – FALCON). The final 
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prime condition contained no letters, just symbols (e.g., %%%%%% - FALCON). 

Participants made a lexical decision to the target. Priming was measured by the difference 

between response times to the target in the symbol condition and response times to targets in 

the partial-word prime conditions. With 33-ms and 50-ms prime exposure durations, 

statistically indistinguishable amounts of priming were found in all three partial-word prime 

conditions. This finding was taken as evidence that letters do not have to appear in the same 

absolute position in primes and targets in order to activate the target’s word representation; 

preserved relative position was sufficient.   

 Peressotti and Grainger (Experiment 3; 1999) further investigated the precision of 

relative position coding by using partial-word primes in which relative letter position was 

preserved or partially disrupted. For example, for the target FALCON, participants were 

presented with a prime preserving relative position, FLCN, or with a prime in which relative 

position was disrupted such as NLCF or FCLN. Each condition was contrasted with a control 

condition in which none of the letters was shared between the prime and target. Results 

indicated significant facilitation for target words that were preceded by primes preserving 

relative position (e.g., FLCN), but there was no discernable effect when relative letter 

position was not preserved in the prime (e.g., NLCF or FCLN). Partial-word priming effects 

are robust and have also been demonstrated in seven- and nine-letter words using both four- 

and five-letter partial-word primes (Grainger et al., 2006). There are two primary 

implications from transposition and partial-word priming research: 1) letters do not have to 

appear in the correct absolute position to activate word representations; 2) relative letter 

positions must be preserved in partial-word primes in order for the prime to preactivate the 

representation of the target word.  
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Models of Word Recognition that Account for Relative Position Priming 

 Several models have been developed that can account for relative position priming 

effects. Although each model is unique, they can be classified into two groups: those that use 

individual letters as the basis for activating word representations and those that use bigrams 

(ordered contiguous and noncontiguous letter pairs). There are two prominent models that 

use individual letters for lexical access: the Overlap model (Gomez, Ratcliff, & Perea, 2008) 

and the SOLAR model (Self-Organizing Lexical Acquisition and Recognition; Davis, 1999). 

In its current state, the Overlap model codes letter position and can calculate the match 

between two letter strings. Therefore, it only specifies how letter representations are activated 

and the way those letter representations might be used to activate appropriate word 

representations. It does not contain a word representation layer or output mechanism, thus 

this model cannot account for relative prime-target frequency effects, the lexicality effect, 

how one word representation comes to be output over another, or any top-down influences in 

word recognition.  

 The primary tenet of the Overlap model is that letters are coded in their approximate 

positions. Unlike the IA model where a letter representation is activated for the one position 

in which it appears, the Overlap model suggests that a letter representation has the highest 

activation level for the position in which it appears, but that the letter representation is also 

activated to a lesser degree in nearby positions. For example, a letter appearing in the third 

position will activate its letter representation most strongly at the third position, but will also 

activate its letter representation in positions two and four to a lesser degree and positions one 

and five to an even lesser degree. The amount of activation and the number of positions 

activated are determined by parameters in the model. The letter distributions for each 
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position are compared to word representations stored in memory; the word representation 

with the best match is the word that is selected (for equations and parameters see Gomez et 

al., 2008). With this method of letter coding, the Overlap model is able to account for the 

finding that word representations are activated even when there are minor disruptions in 

letter order. Gomez et al. have suggested that the Overlap model could be added on as the 

“front-end” of other models of word recognition; for example, it could replace slot position 

coding in the IA model.  

 Unlike the IA and Overlap models, the letter level in the SOLAR model (Davis, 

1999) is position independent. In the model, letters in a word are processed serially from left-

to-right. As each subsequent letter is processed its letter representation is activated and each 

letter becomes associated with a specific level of activation. The activation gradient is 

characterized by a monotonically decreasing function whereby the first letter is associated 

with the highest activation level and the final letter is associated with the lowest activation 

level. In this model, orthographically similar words like salt and slat can be distinguished 

because the l and a in each word are associated with different activation levels. But the 

model also accounts for transposition priming; salt will activate the word slat under data-

limited conditions because the letters are the same and the activation levels associated with 

them are similar.  

 Bigram models are characterized by their use of letter pairs – bigrams – instead of 

individual letters to activate word representations. The most prominent bigram models are 

the Open-Bigram (Grainger & van Heuven, 2003; Schoonbaert & Grainger, 2004) and 

SERIOL models (Sequential Encoding Regulated by Inputs of Oscillations within Letter 

units; Whitney, 2001). Both models use open bigrams, meaning that bigrams are composed 
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of contiguous and noncontiguous letter pairs (e.g., in the word farm, both fa and fr are 

bigrams). Even though access to word representations is based on bigram activation in both 

models, the characteristics of the bigrams differ.  

 The Open-Bigram model (Grainger & van Heuven, 2003; Schoonbaert & Grainger, 

2004) consists of three levels – letter detectors, bigrams, and word representations (also 

called the alphabetic array, the relative position map, and O-words for orthographic word 

forms, respectively) – with bidirectional excitatory and inhibitory connections between the 

bigram and word representation levels and unidirectional feedforward connections from the 

letter detectors to the bigram representations. In the model, the letters in a word are processed 

in parallel with bigrams created for every two-letter combination that appears in the word in 

left-to-right order. These open bigrams are constrained in that they are formed only for letter 

pairs that are separated by two or fewer intervening letters. For example, in the word house 

there are nine bigrams – ho, hu, hs, ou, os, oe, us, ue, se. There are no bigrams for oh because 

the letters are not in the correct left-to-right order and there is no bigram for he because the 

letters are separated by more than two letters. Bigrams have equal weights in the word 

representation, so every bigram contributes to word recognition equally. 

 The SERIOL model (Whitney, 2001) differs in several ways from the Open-Bigram 

model, but discussion here is limited to those differences pertaining to bigram formation and 

bigram characteristics. The SERIOL model contains five layers (edge, feature, letter, bigram, 

and word). Letter nodes in the letter layer “fire” in left-to-right order for languages that read 

from left to right. Bigram nodes are activated when their constituent letters fire in the correct 

order. For the word house, for example, the bigram hu would be activated only when the 

letter u fired after the letter h. Bigrams are weighted so that some bigrams activate word 
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representations more strongly than others. The weight varies based on the temporal proximity 

of the two constituent letters and based on the position of the constituent letters in the word. 

Bigrams consisting of letters firing in immediate temporal succession have the highest 

weights; as the temporal “distance” between the letters increases, bigram weight decreases. 

Bigrams containing the first or last letter of a word have higher weight than bigrams 

containing interior letters. There are two additional differences between the bigrams used in 

the SERIOL model and those used in the Open-Bigram model. First, in the SERIOL model 

the bigrams are truly open in that there is no limit to the number of letters that can intervene 

between two constituent letters. Second, word boundaries – blank spaces before and after the 

word – are included in the bigrams (e.g., Whitney & Cornelissen, 2008). For example, the 

word house contains twelve bigrams including those with word boundaries (denoted by an *) 

– *h, ho, hu, hs, he, ou, os, oe, us, ue, se, e*.  

 Bigram models account for transposed letter findings because the transposed letter 

prime shares more bigrams with the target than the control condition and the transposed letter 

prime shares nearly as many bigrams with the target as identical stimuli. They also easily 

accommodate relative position priming findings. For example, according to the Open-Bigram 

model the presence of the bigram CN in FALCON is the same as the CN in FLCN. In sum, 

models using bigrams to code letter positions as well as models using individual letters can 

account for transposed letter and relative position priming results. 

 Because the most recent models of word recognition can account for relative-position 

priming, some researchers have conducted more fine-grained investigations by using each 

model’s letter position coding scheme to make predictions about how strongly a prime 

should preactivate a target. A similarity score, or “match” value, can be generated for each 
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model based on its assumptions about the way letter order is coded.
6
 For example, in the IA 

model jugde and JUDGE share three out of five letters, producing a match value of .60; this 

is the same match value as juhpe and JUDGE, so these primes should produce equal amounts 

of facilitation. Based on the fact that the match value predictions for the IA model do not 

correspond with empirical evidence, some would suggest that the letter coding scheme used 

in the IA model has been falsified. Match values have been used this way in several recent 

investigations (e.g., Davis & Bowers, 2006; Guerrera & Forster, 2008; Kinoshita & Norris, 

2009) and will be used to make general predictions in the present experiments.  

 There are caveats to consider when using match values. The influences of some 

components (e.g., inhibitory connections between word representations, top-down 

influences) of the models are not considered in the calculations (e.g., Guerrera & Forster, 

2008). For example, match values do not indicate whether increased activation of a word 

representation will result in facilitation or interference because they do not consider the 

lexical status of the prime and match values do not consider the influence of relative prime-

target frequency in orthographic priming. But, because the present experiments use only 

nonword primes, the match values provide a reasonable estimate of the pattern of facilitation 

that should be observed according to the SOLAR, SERIOL, and Open-Bigram models.  

Determining the Contributions of Letters and Bigrams to Orthographic Priming 

 A point has been reached in relative position priming research where several models 

can account for the majority of the data. When this occurs researchers often look for 

                                                 
6
 Most match values can be calculated using Colin Davis’ MatchCalculator program which is available at his 

website, http://www.pc.rhul.ac.uk/staff/c.davis/Utilities/MatchCalc/index.htm. Match values consist of 

normalized values of orthographic similarity where zero represents no similarity whereas one represents a 

perfect orthographic match. Values for the Overlap model are not available via the MatchCalculator, but the 

equations used in the model are available in Gomez et al. (2008). 
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parsimony; models that can account for the data with fewer assumptions are preferred. In this 

case, all four of the aforementioned models contain a letter level, but only two contain the 

additional bigram level. If both bigram and non-bigram models can account for the same 

data, perhaps bigrams are not needed to explain relative position priming. Two studies 

contain manipulations that uniquely tested the contributions of bigrams to orthographic 

priming; they did this by varying the number of bigrams shared between the prime and target 

(e.g., Guerrera & Forster, 2008; Still & Morris, 2008).    

 In both the SERIOL and Open-Bigram models, bigrams are the only sublexical units 

that activate word representations; therefore, when a prime and target share no bigrams, no 

facilitation or interference should be observed. Both Guerrera and Forster (2008) and Still 

and Morris (2008) have found evidence against this prediction. In addition, if bigrams are the 

only representations that directly activate word representations, comparable amounts of 

facilitation or interference should be observed when two different primes share 

approximately the same number of bigrams with the target. Evidence exists that is contrary to 

this prediction as well (e.g., Davis & Bowers, 2006; Guerrera & Forster, 2008; Still & 

Morris, 2008).   

 Guerrera and Forster’s (2008) Experiment 3 included three critical prime 

manipulations in which the number of bigrams shared between the prime and target was 

varied. To elucidate description of the letter positions used for the primes, letter position is 

reported according to the letters’ original positions in the target; this coding scheme has been 

used extensively by Grainger and colleagues. For example, the prime ohuse and target 

HOUSE would be represented by the numbers 21345 and 12345 respectively. The first of 

Guerrara and Forster’s conditions included an internal transposition condition in which the 
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prime and target shared the first and last letters in the same position, but the six internal 

letters were transposed (e.g., 13254768 – 12345678 for anbroaml – ABNORMAL). The 

second condition was the all-transposed, or extreme transposition, condition in which every 

pair of letters was transposed (21436587; baonmrla). The third condition – reversed halves – 

was created by splitting the target in half and then reversing the letter order of each half 

(43218765; onbalamr). Based on the letter coding scheme implemented in the Open-Bigram 

model, primes and targets in the internal transposition and extreme transposition conditions 

share approximately the same number of bigrams while primes and targets in the reversed 

halves conditions share no bigrams.
7
 Using 40-ms masked prime exposure durations and a 

lexical decision task, Guerrera and Forster found significant facilitation in the internal 

transposition condition, but no facilitation or interference was found in the extreme 

transposition or in the reversed halves conditions. These results do not follow the pattern of 

priming predicted by the match values for the SERIOL or Open-Bigram models. The 

implication of this finding is that bigrams may not be the only units involved in activating 

word representations.     

 Still and Morris (2008) used similar manipulations to those of Guerrera and Forster 

(2008), but included a novel condition – the mirror anagram condition – in which neither the 

SERIOL nor the Open-Bigram model predict any facilitation or interference. In the mirror 

anagram condition, the letters in the prime appeared in the exact opposite order of the letters 

in the target (e.g., elba – ABLE). Because no letters appeared in the same relative order, no 

bigrams were shared between the prime and target. In addition to the mirror anagram 

                                                 
7
 Some words contained repeated letters. In these cases bigrams may have been shared between the prime and 

target in the reversed halves condition. 
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condition, Still and Morris included a bigram anagram condition that preserved some 

bigrams (3/6 or 4/6 bigrams) between the prime and target, (e.g., bael – ABLE) and included 

an orthographic neighbor condition in which the prime and target shared all letters in the 

same position except for one letter that was replaced (e.g., ible – ABLE, 3/6 shared bigrams).
8
 

The first results of interest are that significant facilitation was found for neighbor primes and 

targets but not for primes and targets in the bigram anagram condition even though both 

primes shared approximately the same number of bigrams with the target. Like Guerrera and 

Forster’s (2008) findings, these are problematic for bigram models of word recognition. 

 The second result of interest was that interference was obtained in the mirror anagram 

condition. Accounting for this finding is difficult for models of word recognition. Most 

models posit that interference emerges when more than one word representation has been 

activated by the prime. The problem is that the mirror anagrams in the experiment were 

nonwords and were unlikely to activate many word representations that would compete with 

the target for recognition. For example, within current models of word recognition it is 

difficult to make the argument that mirror anagram nonwords like eulc, htom, mreg, lruh, 

fehc, and hgis should activate multiple word representations. Thus each of the current models 

of word recognition predicts that nonword anagram primes should not interfere with target 

processing, but they may facilitate target processing when some letters appear in the same 

relative positions in the prime and target. Because the match value predictions produced by 

the SOLAR, SERIOL, and Open-Bigram models for the anagram conditions are similar, for 

                                                 
8
 Five-letter words were included in the experiment, but are not discussed here. In the mirror anagram condition 

the primes and targets share no bigrams, but the third letter in the prime was in the same absolute position as the 

third letter in the target (e.g., hcrep – PERCH). This stimulus characteristic makes interpretation of the data 

from the five-letter mirror anagram condition more complex. 
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the remainder of this dissertation they will be presented as general word recognition model 

predictions (e.g., see Figure 2).    

 Although models of word recognition may eventually be modified to account for 

these findings, it would likely come at a cost to primary assumptions of the models. For 

example, the IA model could be modified so that letter representations activate every word 

representation containing that letter, regardless of letter position. The result would be that 

anagram primes activate many words that then compete with the target for recognition. 

Additional assumptions would be needed to explain why anagram primes produce 

interference in comparison to control primes that share no letters with the target; perhaps an 

assumption stating that word representations only have inhibitory connections to other word 

representations that contain the same letters. Then, an additional assumption would be 

needed to account for the fact that letter position does contribute to word recognition at some 

stage because one can differentiate between the words stop and post and pots. These would 

constitute major modifications to current IA model assumptions.  

 As an alternative, Still and Morris (2008) proposed that their results may be explained 

by assuming that both individual letters, regardless of position, and letters in their relative 

positions (e.g., bigrams) contribute to the activation and selection of word representations. 

There are several possible ways to implement the separate influences of letters and bigrams. 

Therefore, the purpose of the present experiments is to constrain the possible 

implementations by examining the robustness of mirror anagram interference and by further 

investigating the interaction between letters and bigrams through additional bigram 

manipulations.  
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Present Experiments 

 Several questions that were raised by Still and Morris’ (2008) findings are addressed. 

First, how robust is interference for mirror anagrams? Interference for mirror anagrams has 

been shown only with four-letter words; it is possible that the effect is restricted to short 

words. Results from some studies do suggest that orthographic priming effects are affected 

by word length. For example, in a masked orthographic priming paradigm, significant 

interference has been found for four- and five-letter word targets when they were preceded 

by higher-frequency, orthographically similar word primes (Davis & Lupker, 2006). But, 

Davis and Lupker reported that in a similar experiment using seven-letter targets, 

interference was not obtained; instead, there was a trend toward facilitation.  

 Second, what are the contributions of letters and bigrams to orthographic priming 

effects? The results obtained by Still and Morris (2008) could be explained if one assumes 

that letters and bigrams shared between the prime and target influence the outcome in the 

orthographic priming paradigm in qualitatively different ways. Specifically, when the same 

letters appear in the prime and target, but those letters appear in different positions, the prime 

will inhibit the target. In contrast, when bigrams are shared between the prime and target, the 

prime will facilitate target processing. This set of assumptions will be referred to as the 

Lexical Access by Bigrams and Letters (LABL) hypothesis. Based on this hypothesis, 

interference is found for mirror anagrams because there is interference from the letters that 

appear in the wrong position. For neighbor primes and targets, facilitation is obtained 

because several bigrams are shared between the prime and target. In the bigram anagram 

condition no facilitation or interference is observed because the interference from letters 

appearing in the wrong position offsets the facilitation obtained from the bigrams that are 
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shared between the prime and target. The LABL hypothesis could be tested by using bigram 

anagrams in which the number of bigrams shared between the prime and target is varied. 

Facilitation should be observed if the number of bigrams shared between prime and target is 

increased; interference should be observed if the number of shared bigrams is decreased (see 

Figure 2 for an illustration of these predictions).    

 

Figure 2. General predictions made by word recognition models and the LABL hypothesis 

for the conditions tested by Still and Morris (2008). Of note is that word recognition models 

do not predict any interference when a word target is preceded by a nonword anagram prime. 

 

 Third, do the contributions of letters and bigrams change over time? There is 

evidence that orthographic priming effects change as prime exposure duration is varied. For 

example, in their Experiment 6, Grainger et al. (2006) investigated the time course of word 

recognition by studying the time course of orthographic priming effects. In their experiment, 

primes were displayed for 33 or 83 ms and were followed immediately by a seven-letter 

target to which participants made a lexical decision. The finding of interest for the present 

investigation is that facilitation was obtained from partial-word primes (e.g., the prime flcn 

for the target FALCON) in the 33-ms condition, but no facilitation was found when primes 
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were displayed for 83 ms.
9
 This change in orthographic priming effects is assumed to reflect 

different points of progress in the word recognition process (e.g., Grainger et al, 2006; 

Guerrera & Forster, 2008). In relation to letter position processing, researchers have 

proposed that the earliest stages of word recognition are less sensitive to absolute letter 

position, but as more information is made available, letter position becomes more important 

(e.g., Kinoshita & Norris, 2009; Grainger et al., 2006). If this is the case, one might expect 

that the relative contributions of letters and bigrams to orthographic priming would change as 

prime exposure durations are manipulated.   

 The present experiments address the three aforementioned issues. They test the 

robustness of the mirror anagram finding by examining whether or not interference is limited 

to shorter words (like the four-letter words used by Still and Morris) by using longer (six-

letter) word targets.  In addition, Experiments 1 and 2 used six-letter primes which allowed 

for the inclusion of more bigram anagram manipulations. Specifically, two bigram anagram 

conditions were included along with the mirror anagram and neighbor conditions. These 

manipulations were used to test the hypothesis that letters and bigrams have unique 

contributions to orthographic priming; the primes in one bigram anagram condition shared 

four bigrams with the target, while primes in the other condition shared eight bigrams with 

the target.  

 The present experiments also examined the effects of prime exposure duration. 

Experiment 1 used 35-ms prime exposure durations as in Still and Morris (2008), while 

Experiments 2 and 3 used 70-ms prime exposure durations. A final variable examined was 

                                                 
9
 Primes in this experiment were unmasked. In Experiment 5, Grainger et al. (2006) used 33-ms prime exposure 

durations and either presented a mask before the prime or not. Facilitation was not found for seven- and nine-

letter targets in any of the masked conditions but facilitation was found in the unmasked conditions. 
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prime length; six-letter primes were used in Experiments 1 and 2, while five-letter primes 

were used in Experiment 3. The prime length manipulation was important for two reasons. 

First, it allowed a further test of the robustness of anagram interference. Second, there was 

the question of why anagram interference had not been reported previously; many 

investigations have used “scrambled” primes (e.g., Grainger et al., 2006; Kinoshita & Norris, 

2009; Peressotti & Grainger, 1999). Although there are several reasons why this may be the 

case, one possibility was tested in Experiment 3. Perhaps anagram interference emerges only 

when all letters are shared between the prime and the target. If so, it is no surprise that 

partial-word priming studies (e.g., Grainger et al., 2006; Peressotti & Grainger, 1999) have 

not previously reported an anagram interference finding. Third, the partial-word primes used 

in Experiment 3 also afforded the opportunity to investigate more anagram bigram conditions 

– anagram primes shared zero, two, or four bigrams with targets. Thus, the partial-word 

prime manipulation provided a strong test of the LABL hypothesis (Still & Morris, 2008).  
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CHAPTER 2. EXPERIMENT 1 

 Experiment 1 was designed to replicate and extend the findings of Still and Morris 

(2008). A primary objective of Experiment 1 was to replicate the mirror anagram interference 

finding as it has only been demonstrated in one study. It was also important to show that 

interference is not restricted to the specific set of stimuli used by Still and Morris. A second 

objective of Experiment 1 was to test the hypothesis that interference occurs when a prime 

and target have the same letters, but those letters appear in different positions, and that 

facilitation occurs when a prime and target share bigrams (the LABL hypothesis).  

 To meet these objectives, six-letter stimuli were used in Experiment 1; this allowed 

more bigram anagram manipulations.  Four orthographic conditions were created. Two 

conditions, the 0-bigram anagram (letters in reverse order in the prime and target) and 

neighbor (prime and targets were orthographic neighbors), were similar to those used by Still 

and Morris (2008). The other two conditions were “bigram” anagram conditions: primes and 

targets in the 4-bigram anagram condition shared four bigrams while those in the 8-bigram 

anagram condition shared eight bigrams. With these additional conditions, the LABL 

hypothesis could be tested. Specifically, if shared individual letters in the wrong position lead 

to interference and shared bigrams lead to facilitation, a particular pattern of data should be 

observed: interference for 0-bigram anagrams, interference or a null effect for 4-bigram 

anagrams, a null effect or facilitation for 8-bigram anagrams, and facilitation for neighbors. 

General predictions from word recognition models and the LABL hypothesis are presented in 

Figure 3 for each of the experimental conditions. Models of word recognition generally 

predict that the most facilitation should be found in the neighbor condition with less 

facilitation in the 8-bigram anagram condition, less in the 4-bigram anagram condition, and 
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little or no facilitation in the 0-bigram anagram condition. One exception is that the Open-

Bigram model predicts approximately the same amount of facilitation in the 8-bigram 

anagram and neighbor conditions while the other models predict much less facilitation in the 

8-bigram anagram condition. The LABL hypothesis predicts facilitation in the neighbor 

condition and less facilitation in the 8-bigram anagram condition; interference is predicted in 

the 0-bigram anagram and less interference in the 4-bigram anagram condition.  

 

Figure 3. General predictions made by word recognition models and the LABL hypothesis 

for the orthographically similar conditions tested in Experiments 1 and 2.   

 

 Target word frequency was manipulated in addition to orthographic similarity. 

Although the results of some studies (e.g., Davis & Lupker, 2006, Experiment 1) suggest that 

target word frequency plays a minor role in the amount of facilitation obtained, Still and 

Morris’ (2008) anagram interference was highly dependent on target word frequency. They 

used both low- and high-frequency word targets in order to maximize the chances of finding 

significant effects as it was the first investigation to use these anagram conditions. In their 

study, Still and Morris also investigated two different prime exposure durations: 35 ms and 
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100 ms. When 35-ms prime exposure durations were used, significant interference for mirror 

anagrams was found only for high-frequency targets. In contrast, when 100-ms prime 

exposure durations were used, significant interference for mirror anagrams was found only 

for low-frequency targets with a trend toward interference for high-frequency targets. 

Because it could not be known in advance how the anagram orthographic priming effects 

would change when longer stimuli were used, both low- and high-frequency words were used 

in the present experiments.  

 One additional stimulus constraint was that only words and nonwords with no 

repeated letters were selected. Because the main manipulations in these experiments involved 

creating anagrams that do not share letters in the same absolute positions and creating 

anagrams that do not share letters in the same relative positions, items with repeated letters 

are problematic. For example, there are few anagram combinations that can be made for the 

word research that satisfy the aforementioned conditions; the relative letter orders re and er 

in research make it impossible to create an anagram that does not preserve at least one of the 

two letter orders. In addition, repeated letters are potentially problematic because they could 

result in repeated bigrams (e.g., in research there are two re and two ea bigrams). 

Schoonbaert and Grainger (2004) suggested that only one of the repeated bigrams would be 

used during word recognition (duplicates of a bigram are not created), but questions remain 

as to how repeated bigrams would ultimately be output in the correct order (e.g., Kinoshita & 

Norris, 2009). Both stimulus construction and theoretical issues are avoided by using items 

that do not contain repeated letters. 
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Method 

Participants  

 Eighty Iowa State University students (54 female) participated in exchange for course 

credit. All participants were monolingual English speakers, except two who were bilingual 

learning English before the age of five. Participant age ranged from 18 – 27 (M = 18.9) years.  

Materials 

 The stimulus list consisted of 128 word target trials and 64 nonword target trials. 

Each trial contained a six-letter nonword prime and a six-letter target; all word targets were 

obtained from the English Lexicon Project database (ELP; Balota et al., 2007). Two sets of 

64 target words were selected; half were low-frequency (M = 10.8; Kuĉera & Francis, 1967), 

half were high-frequency (M = 150.3). All word targets had few orthographic neighbors, i.e., 

they were from low-density neighborhoods (range = 0 – 5, M = 1.6). Sixty-four nonword 

targets were obtained from the ARC nonword database (Rastle, Harrington, & Coltheart, 

2002) with the constraint that they had pronounceable bodies and had few orthographic 

neighbors (range = 0-5; M = 0.97).  

 All primes in the experiment were nonword primes. Four orthographically similar 

prime conditions were created for each target: neighbor, 8-bigram anagram, 4-bigram 

anagram, and 0-bigram anagram. Neighbor primes shared 5/6 letters with the target in the 

same positions (examples of the conditions used in the experiment appear in Table 1). All 

neighbor primes were interior neighbors in that the one letter that was different was not the 

first or last letter (e.g., thione – THRONE); this ensured that the prime and target shared 

seven or eight bigrams. Anagram primes shared all six letters with the target, but no letters 

appeared in the same position or in the same contiguous order (i.e., two adjacent letters in the 
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target were never adjacent in the same order in the prime). For the remaining anagram 

conditions, the letter order of the primes is described according to the letters’ original 

positions in the target. In the 8-bigram anagram condition, each successive pair of letters – 

letters 1 and 2, letters 3 and 4, letters 5 and 6 – were transposed (e.g., htoren – THRONE) to 

create a prime that shared eight bigrams with the target. Using the number coding scheme, 

the 8-bigram anagram prime would be represented as 214365. In the 4-bigram anagram 

condition, prime letter order was 461532 (e.g., oetnrh – THRONE); the prime and target 

shared 4 bigrams. In the 0-bigram anagram condition the letters in the prime were in the 

reverse order of the target, 654321 (e.g., enorht – THRONE), and the prime and target shared 

no bigrams. All of the word target trial stimuli appear in Appendix A. 

Table 1  

 

Examples of the Conditions used in Experiments 1 and 2      

             

               Target: THRONE        Target: CLAMPS 

  

Prime Condition  Similar       Control     Similar      Control   

   

0-bigram (0 B, 6 L)  enorht      spmalc   spmalc      enorht 

  

4-bigram (4 B, 6 L)  oetnrh     mscpal   mscpal      oetnrh 

  

8-bigram (8 B, 6 L)  htoren     lcmasp   lcmasp      htoren  

  

Neighbor (7-8 B, 5 L*) thione     clamds   clamds      thione 

 
 

Note. B = number of shared bigrams between prime and target, L = number of letters shared 

between prime and target in any position. L* indicates that the letters appeared in the same 

positions in the prime and target. 

 

Control conditions were created for each of the orthographically similar conditions. Because 

some primes are more word-like than others (e.g., clamds vs. spmalc) there is a question of 

which controls are the most appropriate. For example, it is possible that using a nonword 
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prime with illegal letter combinations has different influences on target processing than a 

nonword prime containing legal letter combinations. To control for these potential 

differences, a yoking technique was used whereby an orthographically similar prime in one 

condition would be compared to an orthographically different prime from the same 

condition. The assumption is that the primes in any one condition tend to be more similar in 

terms of the legality of their letter combinations than primes in different conditions (e.g., 

most primes in the 0-bigram anagram condition contain illegal letter combinations but primes 

in the neighbor condition tend to contain only legal letter combinations). Differences in the 

mean number of orthographic neighbors for each of the prime conditions support the 

assertion that differences exist across primes in the various conditions (see Table 2). 

Table 2  

Mean Number of Orthographic Neighbors for Primes in Each Condition  

  

Target Frequency  0-bigram  4-bigram  8-bigram  Neighbor  

 

Low       .125     .016     .000     1.11 

  

High        .016     .016     .000     1.06 

  

 

Creation of the control conditions was done by yoking together two targets that did not share 

any letters (e.g., THRONE and CLAMPS) and then by trading primes for each of their 

respective orthographically similar conditions. For example spmalc – THRONE would be the 

control condition for enorht – THRONE and enorht – CLAMPS would be the control 

condition for spmalc – CLAMPS (see Table 1). The same procedures for yoking and creating 

control conditions were used for the word and nonword targets. Eight experimental lists were 

constructed so that each word and nonword target was presented in each of the eight 
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conditions across experimental lists. Each list contained 24 trials (eight low-frequency, eight 

high-frequency, eight nonword) in each of the eight conditions. Participants saw only one list 

during an experiment and never saw any item more than once.   

 Ten additional trials were constructed for use in the practice block. All items 

contained six letters, all primes were nonwords, and five of the trials contained word targets.   

Apparatus and Procedure 

 For all experiments reported in this dissertation, stimulus presentation was controlled 

by PsyScope experimental software (Cohen, MacWhinney, Flatt, & Provost, 1993) run on a 

Macintosh G4 and presented on a 40 cm Mitsubishi Diamond 73 monitor. Participants were 

seated approximately 60 cm from the monitor and all items were presented in black 48 point 

Arial font on a white background. Participant responses were collected using a Psyscope 

button box (New Micros, Dallas, TX). 

 Each experimental trial began with a fixation cross in the middle of the screen for 500 

ms. After that, the trial proceeded as follows: 500 ms premask (######), 35 ms lowercase 

prime, and uppercase target (primes and targets were presented in different case to reduce the 

likelihood of visual fusion). The target remained on the screen until the participant pressed a 

button indicating that the target was a word or pressed a different button indicating that the 

target was a nonword.   

 The experimental trials were preceded by ten practice trials giving participants the 

opportunity to become accustomed to the procedure. Participants were told that they would 

see a plus sign followed by a row of pound signs, then they would see a briefly flashed item 

followed by a second item in uppercase. They were instructed to respond by pressing the left 

button for “No” if the uppercase item was a nonword or by pressing the right button for 
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“Yes” if the uppercase item was a word. Participants were encouraged to respond both 

quickly and accurately to the uppercase word (target). The next trial began 1500 ms after the 

participant response. Trial order was randomized. There were four breaks during the 

experiment. 

Results  

 Responses faster than 200 ms or slower than 1500 ms were classified as outliers and 

excluded from all analyses. This procedure resulted in exclusion of less than 2% of the data. 

Three participants were replaced due to excessive error rates (30% or more of their data 

consisted of errors or outliers). Only correct responses were included in the response time 

analyses. Mean response times and error rate percentages appear in Table 3.  

Word Target Trials  

 A 2 x 2 x 4 repeated-measures ANOVA with the variables orthographic similarity 

(similar, control), target frequency (high, low), and condition (0-bigram, 4-bigram, 8-bigram, 

neighbor) was conducted for subjects and items. Participant responses were faster to targets 

in orthographically similar conditions (M = 568) than in control conditions (M = 576), F1(1, 

79) = 7.53, MSE = 2,663; F2(1, 126) = 6.48, MSE = 2,349, both ps < .05. Participant 

responses were also faster to high-frequency (M = 551) than to low-frequency targets (M = 

592), F1(1, 79) = 142.38, MSE = 3,719; F2(1, 126) = 40.22, MSE = 11,373, both ps < .001. In 

addition, the main effect of condition was significant reflecting the fact that responses tended 

to be faster in the neighbor and 8-bigram anagram conditions (M = 567 and M = 568 

respectively) than the 0- and 4-bigram anagram conditions (M = 578 and M = 574), F1(3, 77) 

= 3.51, MSE = 2,676; F2(3, 124) = 3.30, MSE = 2,808, both ps < .05. The interaction between 

target frequency and condition was significant in the subject analysis and approached 
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significance in the item analysis, F1(3, 77) = 3.65, p = .016, MSE = 2,285; F2(3, 124) = 2.45, 

p = .067, MSE = 2,808. No other interactions were significant.    

Table 3 

 

Mean Response Times and Error Rates obtained in Experiment 1 

    

                    Target Type  

    

        Low-Frequency        High-Frequency  Nonword 

 

Condition      RT         Error Rate         RT      Error Rate       RT           Error Rate 

   

0-Bigram  
 

   Similar 603 (12) 4.1 (0.9) 554 (11)   0.6 (0.5) 700 (16) 9.2 (1.4)   
 

   Control 600 (11) 3.3 (0.9) 553 (10)  0.9 (0.3) 694 (14)       10.6 (1.7) 
 

Difference    -3   (9)       -0.8 (1.1)     -1   (6) 0.3 (0.6)    -6 (11) 1.4 (1.9) 

 
4-Bigram  
 

 Similar 596 (12) 3.1 (0.8) 552 (11)  1.4 (0.6) 699 (16) 7.3 (1.1) 
 

 Control 597 (11) 3.4 (0.8) 553 (11) 0.8 (0.4) 709 (16) 7.7 (1.2) 
 

Difference     1   (9) 0.3 (1.0)     1   (9)       -0.6 (0.7)   10 (12) 0.4 (1.5) 

 
8-Bigram 
 

 Similar 566 (10) 2.5 (0.7) 554 (12) 0.6 (0.3) 696 (14) 9.5 (1.7) 
 

 Control 596 (12) 3.1 (0.9) 555 (11) 0.5 (0.3) 713 (14) 7.0 (1.0) 
 

Difference       30  (9) 0.6 (1.0)     1   (7)       -0.1 (0.4)   17 (10)       -2.5 (1.6) 

 
Neighbor 
 

 Similar 577 (12) 2.8 (0.7) 539 (11) 1.4 (0.5) 713 (16) 7.7 (1.3) 
 

 Control 601 (12) 2.3 (0.5) 551 (11) 0.3 (0.3) 718 (15) 8.3 (1.3) 
 

Difference   23  (9)        -0.5 (0.8)    12  (8)       -1.1 (0.4)     5 (12) 0.6 (1.6) 

 

Note. Standard error of the mean appears in parentheses.  

 

As the purpose of the experiment was to examine differences produced by 

orthographic similarity across the four conditions, the results of most interest are those 
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pertaining to the differences between orthographic similarity and condition. Difference 

scores (difference between control and orthographically similar conditions) of the mean 

response times appear in Figure 4. Planned comparisons between the orthographically similar 

and control conditions for each of the orthographic conditions (0-bigram, 4-bigram, 8-

bigram, neighbor) test for the presence of interference or facilitation resulting from 

orthographic similarity between the prime and target. These comparisons were performed for 

both high- and low-frequency targets across participants and items. Responses were faster for 

low-frequency targets preceded by 8-bigram anagram primes compared to the control 

condition, t1(79) = -3.69, SEM = 8.86; t2(63) = -3.56, SEM = 8.36, both ps < .01; response 

times were also faster for low-frequency targets preceded by neighbor primes, t1(79) = -2.83, 

SEM = 9.06; t2(63) = -2.46, SEM = 8.69, both ps < .05, compared to control conditions. No 

other response time planned comparisons reached significance in the subject and item 

analyses.  

Separate ANOVAs were performed for error rates. The only significant effect was a 

main effect of target frequency with participants making more errors on low-frequency 

targets (M = 3.1) than on high-frequency targets (M = 0.8), F1(1, 79) = 33.24, MSE = .005; 

F2(1, 126) = 22.82, MSE = .006, both ps < .001. No other main effects or interactions were 

significant in the error rate ANOVA. 

Planned comparisons revealed that more errors were made when high-frequency 

targets were preceded by neighbor primes than in the control condition, t1(79) = 2.40, p = 

.019, SEM = .005; t2(63) = 1.99, p = .051, SEM = .006. The apparent interference for 

neighbors most likely reflects a speed-accuracy tradeoff as there was a trend toward 
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facilitation in the response time data for these stimuli (shown in Table 3). No other planned 

comparisons for error rates reached significance. 

 

Figure 4. Mean differences between control and orthographically similar conditions in 

Experiment 1. Error bars represent the standard error of the mean difference. * p < .05;            

** p < .01; *** p < .001.    

 

Nonword Target Trials 

 

  A 2 x 4 repeated-measures ANOVA with the variables orthographic similarity 

(similar, control), and condition (0-bigram, 4-bigram, 8-bigram, neighbor) were conducted 

for subjects and items. No main effects or interactions reached significance in the subject and 

item analyses. ANOVAs were also conducted for error rates; no main effects or interactions 

were significant.  

Discussion 

 The results of Experiment 1 are easily accounted for by current models of word 

recognition that use relative position letter coding schemes (e.g., SOLAR, Overlap model, 

SERIOL, Open-Bigram model). Facilitation was found in the two conditions where many 
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letters appear in the same relative positions in the prime and target (e.g., 8-bigram anagram 

and neighbor conditions); no evidence of orthographic priming effects were observed in the 

two conditions in which few, if any, letters appear in the same relative positions in the prime 

and target (e.g., 0- and 4-bigram anagram). The data fit the Open-Bigram model predictions 

very well as it was the only model predicting similar amounts of facilitation for the 8-bigram 

anagram and neighbor conditions. Although this could be taken as confirmatory evidence for 

current models of word recognition, an explanation for the mirror anagram interference (Still 

& Morris, 2008) is still lacking. 

 Mixed evidence was obtained for the influence of target word frequency on the size 

of the orthographic priming effect. The interaction between frequency and orthographic 

similarity was not significant, nor was the three-way interaction between target frequency, 

orthographic similarity, and condition. Nevertheless, significant facilitation was found for 

low-frequency targets in the 8-bigram and neighbor conditions but not for high-frequency 

targets in any condition. This finding suggests that target frequency does influence the size of 

the orthographic priming effect; in this case low-frequency targets gained the largest benefit 

from the presentation of primes that shared bigrams with the target.  

 The purpose of Experiment 1 was to further investigate the origins of mirror anagram 

interference in two ways: 1) by investigating the contributions of letters and bigrams to the 

orthographic priming effect and 2) by examining the robustness of anagram interference. 

Based on the findings of Still and Morris (2008) it was suggested that letters in the wrong 

position between primes and targets may lead to interference while shared bigrams between 

primes and targets leads to facilitation. While finding facilitation in the 8-bigram anagram 

and neighbor conditions and null effects in the 4-bigram condition is consistent with Still and 
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Morris’ LABL hypothesis, the absence of interference in the 0-bigram anagram condition 

raises questions about the validity of the hypothesis and the robustness of anagram 

interference. The primary difference between Experiment 1 and the previous investigation by 

Still and Morris was the length of the stimuli – Still and Morris used 4-letter items, while 

Experiment 1 used 6-letter items. It is possible that the absence of the anagram interference is 

related to processing differences in longer words and shorter words.   
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CHAPTER 3. EXPERIMENT 2 

 Experiment 2 was designed to further examine anagram interference and the LABL 

hypothesis by using longer prime exposure durations. Previous studies have shown that 

orthographic priming effects in masked priming paradigms are affected by prime exposure 

duration. Recall that Grainger et al. (2006, Experiment 6) found facilitation for seven-letter 

targets using 33-ms prime exposure durations, but no evidence of orthographic priming 

effects was observed when 83-ms prime exposure durations were used. Although Grainger et 

al. findings suggest that smaller priming effects should be found in Experiment 2, what 

should be kept in mind is that Grainger et al.’s 33-ms primes were not preceded by a forward 

mask. Masking effects likely slow prime processing so that the prime exposure duration in 

Experiment 1 is functionally shorter than the prime exposure duration Grainger et al. used. 

Therefore, it is possible that orthographic priming effects would be larger in Experiment 2 

than in Experiment 1.   

  In addition, anagram interference has only been shown once before, so there are no 

data related to how it might be affected by prime exposure duration. It is reasonable to 

propose that interference might take longer than facilitation to emerge. In the IA model 

(McClelland & Rumelhart, 1981), interference occurs when a prime activates at least one 

representation that competes with the target. The representations compete by inhibiting one 

another. Because the strength of the inhibition depends on the activation of the 

representation, a representation with higher activation should produce more inhibition. By 

increasing the prime exposure duration, the activation levels of competing representations in 

the word recognition system may reach a level substantial enough to create more inhibition 

(in comparison to Experiment 1) and interfere with target processing. The competition model 
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also predicts that prime exposure duration could influence whether facilitation or interference 

is obtained. In particular, a prime with a longer exposure duration is better encoded and the 

outcome of the competition is more likely to result in interference, as the prime will compete 

more with the target. 

 An alternative proposal is that interference simply takes more time to emerge. This 

could be the case if a minimum amount of activation is required before any inhibition is 

produced.  Along these lines, longer stimuli (six-letter) may take more time to process than 

shorter (four-letter) stimuli thereby delaying the point at which a longer stimulus will inhibit 

the target. If it is the case that six-letter stimuli take more time to process, by increasing the 

prime exposure duration in Experiment 2, the likelihood of obtaining anagram interference 

should increase.  

 Another outcome of using increased prime exposure durations is that it provides an 

opportunity to investigate the contributions of letters and bigrams to orthographic priming 

effects over time. This premise is based on the assumption that when primes have longer 

exposure durations (e.g., 70 ms) more processing has been completed before the target is 

presented in comparison to when primes have shorter exposure durations (e.g., 35 ms). 

Inferences can then be made about how the process of word recognition unfolds over time by 

comparing the pattern of results obtained under different prime exposure durations. To this 

end, Experiment 2 employed the same stimuli as Experiment 1, but used 70-ms prime 

exposure durations. Word recognition model and LABL hypothesis predictions for 

Experiment 2 were the same as Experiment 1 because they do not specify how orthographic 

priming effects change with increased prime exposure durations.   
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Method 

Participants  

 Eighty Iowa State University students (48 female) participated in exchange for course 

credit. All participants were monolingual English speakers. Participant age ranged from 18 – 

45 (M = 19.7) years.  

Materials and Procedure 

 Materials and procedures were the same as those used in Experiment 1 except that 

primes were displayed for 70 ms instead of 35 ms.  

Results 

 Responses faster than 200 ms or slower than 1500 ms were classified as outliers and 

excluded from all analyses. This procedure resulted in exclusion of less than 3% of the data. 

Four participants were replaced due to excessive error rates (30% or more of their data 

consisted of errors or outliers). Only correct responses were included in the response time 

analyses. Mean response times and error rates appear in Table 4.  

Word Target Trials  

 Two 2 x 2 x 4 repeated-measures ANOVAs with the variables orthographic similarity 

(similar, control), target frequency (high, low), and condition (0-bigram, 4-bigram, 8-bigram, 

neighbor) were conducted one for subjects and one for items. Participant responses were 

significantly faster for high-frequency targets (M = 594) than for low-frequency targets (M = 

639), F1(1, 79) = 112.16, MSE = 5,811; F2(1, 126) = 40.79, MSE = 13,294, both ps < .001. In 

addition, there was a main effect of condition reflecting faster responses in the neighbor 

condition (M = 604) than in the other conditions (0-bigram M = 619, 4-bigram M = 621, 8-

bigram M = 621), F1(3, 77) = 7.75, MSE = 3,179; F2(3, 124) = 6.92, MSE = 2,937, both ps < 
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.001. There was a significant interaction between orthographic similarity and condition, 

reflecting the tendency for interference in the anagram conditions and facilitation in the 

neighbor condition, F1(3, 77) = 12.74, MSE = 3,256; F2(3, 124) = 17.07, MSE = 3,285, both 

ps < .001. No other main effects or interactions were significant in the ANOVA.    

Table 4 

 

Mean Response Times and Error Rates obtained in Experiment 2    

     

                    Target Type  

    

        Low-Frequency        High-Frequency  Nonword 

 

Condition       RT         Error Rate          RT       Error Rate        RT           Error Rate 

   

0-Bigram  
 

   Similar 652 (13) 4.1 (0.8) 608 (11)   1.3 (0.4) 743 (16) 7.2 (1.1)   
 

   Control 632 (12) 2.7 (0.7) 586 (10)  0.6 (0.4) 758 (15) 5.0 (1.1) 
 

Difference      -20 (11)       -1.4 (1.1) -22   (7)        -0.6 (0.5)   15 (11)       -2.2 (1.6) 

 

4-Bigram  
 

 Similar 648 (13) 3.4 (0.8) 605 (13)  1.6 (0.5) 747 (16) 6.7 (1.2) 
 

 Control 649 (14) 2.7 (0.6) 584 (10) 0.5 (0.3) 745 (14) 5.6 (1.1) 
 

Difference     1 (10)       -0.7 (1.1)  -21  (8) 1.1 (0.6)    -2 (12)       -1.1 (1.5) 

 

8-Bigram 
 

 Similar 643 (14) 3.6 (0.9) 610 (12) 2.0 (0.6) 743 (16) 7.7 (1.2) 
 

 Control 635 (13) 2.2 (0.7) 599 (13) 1.1 (0.4) 750 (16) 7.7 (1.2) 
 

Difference     8 (10)       -1.4 (1.2)  -11 (10)       -0.9 (0.7)     7 (13) 0.0 (1.4) 

  

Neighbor 
 

 Similar 606 (12) 2.7 (0.8) 566 (10) 0.6 (0.3) 755 (17) 7.2 (1.1) 
 

 Control 648 (14) 2.7 (0.8) 597 (13) 0.3 (0.2) 745 (16) 6.7 (1.1) 
 

Difference   42 (10) 0.0 (0.9)   31 (10)       -0.3 (0.4)  -10 (15)       -0.5 (1.5) 

 

Note. Standard error of the mean appears in parentheses. 
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 Difference scores (control – orthographically similar) of the mean response times 

appear in Figure 5. Planned comparisons between the similar and control conditions for each 

of the orthographic conditions (0-bigram, 4-bigram, 8-bigram, neighbor) tested for the 

presence of interference or facilitation resulting from orthographic similarity. These 

comparisons were performed for both high- and low-frequency targets across participants 

and items.  

 Interference was significant for high-frequency targets in the 0-bigram anagram 

condition, t1(79) = 2.97, SEM = 7.43; t2(63) = 3.00, SEM = 8.10, both ps < .01, and 

approached significance for low-frequency targets, t1(79) = 1.90, p = .061, SEM = 10.82; 

t2(63) = 1.64, p = .106, SEM =10.75. Interference was also obtained for high-frequency 

targets preceded by 4-bigram anagram primes, t1(79) = 2.55, SEM = 7.43; t2(63) = 2.12, SEM 

= 9.22, both ps < .05. In contrast, facilitation was obtained in both neighbor conditions: low-

frequency targets, t1(79) = -4.30, SEM = 9.63; t2(63) = -4.03, SEM = 10.22, both ps < .001 

and high-frequency targets, t1(79) = -3.19, SEM = 9.67; t2(63) = -3.56, SEM = 8.68, both ps < 

.01. No other response time planned comparisons reached significance.  

Two separate ANOVAs (one subject, one item) were performed for error rates. 

Participants made significantly more errors on low-frequency targets (M = 3) than on high-

frequency targets (M = 1), F1(1, 79) = 52.15, MSE = .003; F2(1, 126) = 22.95, MSE = .005, 

both ps < .001. In addition, participants made significantly more errors in the 

orthographically similar conditions (M = 2.4) than in the control conditions (M = 1.6), F1(1, 

79) = 5.06, MSE = .004; F2(1, 126) = 8.78, MSE = .002, both ps < .05. No other main effects 

or interactions were significant in the ANOVA.  
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One difference in planned comparisons of the error rates approached significance; 

participants tended to make more errors for high-frequency targets when preceded by 4-

bigram anagrams, t1(79) = 1.83, p = .070, SEM = .006; t2(63) = 1.99, p = .051, SEM = .006. 

 

Figure 5. Mean differences between control and orthographically similar conditions in 

Experiment 2. Error bars represent the mean standard error of the difference. Interference in 

the low-frequency 0-Bigram condition approached significance, p = .069. * p < .05; ** p < 

.01; *** p < .001. 

 

Nonword Target Trials 

 Two 2 x 4 repeated-measures ANOVAs (response time and error rate) with the 

variables orthographic similarity (similar, control), and condition (0-bigram, 4-bigram, 8-

bigram, neighbor) were conducted for subjects and items. No main effects or interactions 

were significant in the RTs or error rates.  

Discussion 

 In contrast to Experiment 1, the results of Experiment 2 are difficult to explain using 

current models of word recognition. Interference was found for 0- and 4-bigram anagrams. 

The first problem for existing models of word recognition is that, in both cases, the primes 
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were nonwords. In models that use lexical inhibition to explain interference, the only way 

interference can be obtained is if the prime activates word representations that compete with 

the target for recognition. Nonwords, by definition, do not have word representations, so they 

do not activate their own word representation to compete with the target (Davis, 2003). In 

addition, based on the letter position coding schemes used in current models of word 

recognition, anagram primes should not activate many competing word representations. 

Thus, lexical inhibition is an unlikely candidate to explain the interference obtained in the 0- 

and 4-bigram anagram conditions. The second potential problem for current models of word 

recognition is that the results for the 8-bigram and neighbor conditions are not consistent 

from Experiment 1 to Experiment 2. Current models have difficulty accounting for priming 

differences related to different prime exposure durations. If an effect was significant in 

Experiment 1, it should also be significant in Experiment 2. When the Open-Bigram model 

coding scheme is used to code relative letter position, the similarity between the primes and 

targets in the 8-bigram anagram and neighbor conditions (containing seven or eight bigrams) 

is nearly the same. What this means is that if the neighbor condition produces facilitation, so 

should the 8-bigram condition. This was not the case in Experiment 2. These findings also 

challenge the SOLAR and SERIOL models of word recognition because they predict more 

facilitation for targets preceded by neighbor primes than those preceded by 8-bigram 

anagrams; this was the case in Experiment 2, but not in Experiment 1. 

 In contrast to the explanatory power of current models of word recognition, the data 

from Experiment 2 are readily explained by the LABL hypothesis. Interference was obtained 

in conditions in which anagram primes shared few bigrams with the target and no letters 

appeared in the same absolute positions. Facilitation was obtained when several bigrams 
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were shared between the prime and target and no letters appeared in the same absolute 

positions. These findings support the assertion that facilitation emerges when bigrams are 

shared between the prime and target while interference emerges when letters are shared 

between the prime and target but those letters appear in different positions. Even though the 

LABL hypothesis provides a good fit for the results of Experiment 2, the fit for Experiment 1 

is not as good. Therefore, current models of word recognition and the LABL hypothesis 

share one shortcoming: they do not explain why facilitation and interference change with 

prime exposure duration.   

 In order to explain the results of both Experiments 1 and 2, some additional 

assumptions must be made about the time course of interference and facilitation. 

Examination of the combined data from Experiments 1 and 2 reveals that the influence of 

bigrams in orthographic priming effects emerges earlier than the influence of letters in the 

wrong position. This can be inferred from several aspects of the data. First, in Experiment 1 

the only evidence of orthographic priming effects appeared in the 8-bigram and neighbor 

conditions for which facilitation was obtained. These were the conditions in which primes 

and targets shared the most bigrams. Second, in Experiment 1, no evidence of interference 

was obtained, but interference was readily obtained in the 0- and 4-bigram anagram 

conditions of Experiment 2. Third, the null effect for 4-bigram anagrams in Experiment 1 

becomes interference in Experiment 2 and facilitation for 8-bigram anagrams in Experiment 

1 becomes a null effect in Experiment 2. What this difference may suggest is that the 

interference generated by letters in the wrong position becomes more prominent over time. 

Of particular note is that interference was restricted to the anagram conditions. Neighbor 

conditions produced facilitation in both Experiments 1 and 2. This finding suggests that it is 



www.manaraa.com

 52 

the presence of shared letters in the wrong positions that produce interference and not just the 

presence of shared letters.  

 As in Experiment 1, frequency did not interact with condition and orthographic 

similarity. This could be taken as evidence that target frequency does not influence the size 

of the orthographic priming effect. Contrary to this assertion, interference was found in the 0- 

and 4-bigram anagram conditions for high-frequency targets, but interference only 

approached significance in the 0-bigram anagram condition for low-frequency targets. 

Experiments 1 and 2 demonstrate that the emergence of facilitation and interference change 

over time, and also suggest that target word frequency contributes to when these effects 

emerge.  

 Current models of word recognition and the LABL hypothesis do not predict any 

effect of target word frequency on interference or facilitation, but the competition model 

does. According to the competition model, word frequency is another variable that influences 

encoding and the competitive interactions between items presented in close temporal 

proximity. In particular, a high-frequency target is better encoded than a low-frequency target 

therefore interference should be easier to obtain using high-frequency targets and facilitation 

easier to obtain with low-frequency targets. To illustrate this point, consider the encoding 

function in Figure 6 where Point A represents a low-frequency target in an anagram 

condition while Point B represents a high-frequency target in an anagram condition. As 

illustrated in the figure, increased encoding associated with high-frequency targets is more 

likely to result in interference compared to more poorly encoded low-frequency targets. 
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Figure 6. Point A represents an estimate of the encoding of low-frequency targets in anagram 

conditions in Experiment 2. Point B represents an estimate of the encoding of high-frequency 

targets in anagram conditions in Experiment 2.  

 

 Overall, the results of Experiment 2 replicate and extend Still and Morris’ (2008) 

findings. Based on the general pattern of results, it appears that letters in the wrong position 

lead to interference while shared bigrams lead to facilitation. Accounting for these results 

will require substantial modifications to existing models of word recognition. It is, therefore, 

imperative that anagram interference be fully investigated. One issue motivating this series of 

experiments was the fact that Still and Morris (2008) found anagram interference using 

nonword primes while previous research using anagrams had not revealed such an effect. A 

noticeable difference between the current experiments and earlier investigations is that the 

primes in the current experiments contained all of the letters of the target but previous studies 

have often used partial-word primes (e.g., Grainger et al., 2006; Peressotti & Grainger, 

1999). It is possible that when partial-word primes are used, interference is weakened to the 
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point that it would not be observed. The purpose of Experiment 3 was to further test the 

robustness of anagram interference by using partial-word primes.     
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CHAPTER 4. EXPERIMENT 3 

 Four new anagram conditions were introduced in Experiment 3. Each of the primes in 

the experimental conditions were partial-word primes because they had fewer letters than the 

target (five-letter primes for six-letter targets) and the number of bigrams shared between the 

prime and target was varied. The experiment had two aims. The first aim was to examine the 

robustness of anagram interference. Experiment 2 revealed interference in both the 0- and 4-

bigram anagram conditions, but, it may be that anagram interference is only obtained when 

all the letters in the prime appear in the target. The second aim was to provide an additional 

test of the LABL hypothesis. New bigram conditions were constructed such that Experiment 

3 included 0-, 2-, and 4-bigram partial-word anagram conditions and a “neighbor” (like the 

neighbor condition but with one letter removed) condition that shared seven bigrams with the 

target. The LABL hypothesis predicted a pattern of results in which interference should be 

obtained in the 0-, 2-, and 4-bigram partial-word anagram conditions while facilitation should 

be obtained in the “neighbor” condition. If interference is reduced in partial-word primes 

then a null effect or a small amount of facilitation should be found in the 4-bigram condition. 

In contrast, if interference depends on all letters being present in the prime and target, no 

interference should be found in any condition. As in Experiments 1 and 2, current models of 

word recognition predict facilitation or null effects in the partial-word anagram conditions.  

Method 

Participants 

 Eighty Iowa State University students (43 female) participated in exchange for course 

credit. All participants were monolingual English speakers. Participant age ranged from 18 – 

24 (M = 19.5) years.  
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 Materials and Procedure 

 Materials were similar to those used in Experiments 1 and 2. For the most part, the 

same targets were used, but the primes contained all of the letters in the target except for the 

third letter. Four new prime conditions were created: 0-bigram anagram (65421), 2-bigram 

anagram (26514), 4-bigram anagram (51624), and “neighbor” (12456). The conditions were 

selected so that a wide range of bigram anagram conditions could be investigated while 

maintaining some conditions for comparison with those of Experiment 2. Overall, the 

conditions were similar to those used in Experiments 1 and 2 in that the 0-bigram anagram 

primes shared no letters in the same relative order with the targets while the “neighbor” 

primes shared all letters in the same relative positions as their targets (similar to the neighbor 

conditions in Experiments 1 and 2) with two of those letters appearing in the same absolute 

position. The 2-bigram and 4-bigram primes did not share any letters in the same position 

with the target, but did share some letters in the same relative position (similar to the 4-

bigram anagram conditions in Experiments 1 and 2). Mean number of neighbors varied by 

condition as seen in Table 5.  

Table 5  

 

Mean Number of Orthographic Neighbors for Primes in Each Condition    

             

Target Frequency  0-bigram  2-bigram  4-bigram  “Neighbor”  

 

Low       .313     .016     .047      1.34 

  

High        .188     .047     .031      1.31 

  

 

 Yoking was completed in the same way to create control conditions as in the previous 

experiments (see Table 6 for an example of the prime conditions and how they were yoked). 
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Also, as in Experiments 1 and 2, eight experimental lists were created so that each target was 

presented in all the conditions across lists, but no item was repeated in any list. Each list 

contained 24 trials (eight low-frequency, eight high-frequency, eight nonword) for each of 

the eight conditions.  

 Upon creating these new prime conditions, primes for fifteen of the targets were 

words instead of nonwords (e.g., moths – MOUTHS); when this occurred, that target was 

replaced with another word of similar lexical characteristics (e.g., frequency and 

neighborhood size). All of the word target trial stimuli appear in Appendix B. The procedure 

was the same as that used in Experiment 2.  

Table 6 

 

Example of the Conditions used in Experiment 3     

             

           Target: THRONE        Target: CLAMPS  

 

Prime Condition  Similar       Control     Similar      Control  

   

0-bigram (0 B, 5 L)  enoht      spmlc   spmlc    enoht  

 

2-bigram (2 B, 5 L)  hento     lspcm   lspcm    hento  

 

4-bigram (4 B, 5 L)  nteho     pcslm   pcslm    nteho   

 

“Neighbor” (7 B, 5 L, 2 L*) thone     clmps   clmps  thone  

 

 

Note. B = number of shared bigrams between prime and target, L = number of letters shared 

between prime and target in any position. L* indicates that the letters appeared in the same 

positions in the prime and target. 

 

 A subset of participants (N = 26) was asked to rate their awareness of the prime after 

completing the experimental trials. Participants were asked to indicate which statement best 

described their awareness of the briefly flashed item (prime) during the experiment: 1) I 
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could not see it at all, 2) I could see a flash, but that was all, 3) I could see that it had letters 

in it, 4) I could read the briefly flashed item. 

Results 

 Participants reported limited awareness of the prime. The majority (18 out of 26) of 

the participants indicated that they could see that the prime had letters in it, and only one 

participant reported being able to read the prime. Seven participants reported very limited 

awareness of the prime with four reporting that they had only seen a flash, and three 

reporting that they could not see the prime at all. 

 For the experimental trials, responses faster than 200 ms or slower than 1500 ms were 

classified as outliers and excluded from all analyses. This procedure resulted in exclusion of 

less than 3% of the data. Seven participants were replaced due to excessive error rates (30% 

or more of their data consisted of errors or outliers). Only correct responses were included in 

the response time analyses. Mean response times and error rates appear in Table 7.  

Word Target Trials   

 Two 2 x 2 x 4 repeated-measures ANOVA with the variables orthographic similarity 

(similar, control), target frequency (high, low), and condition (0-bigram, 2-bigram, 4-bigram, 

“neighbor”) were conducted for subjects and items. Participant responses were significantly 

faster to high-frequency targets (M = 594) than to low-frequency targets (M = 645), F1(1, 79) 

= 182.24, MSE = 4,574; F2(1, 126) = 38.85, MSE = 17,940, both ps < .001. A main effect of 

condition was also obtained, reflecting the fact that responses to targets in the “neighbor” 

condition tended to be faster (M = 604) than responses to targets in the other conditions (0-

bigram M = 626, 2-bigram M = 622, 4-bigram M = 627), F1(3, 77) = 8.11, MSE = 3,559; 

F2(3, 124) = 8.16, MSE = 4,004, both ps < .001. There was a significant interaction between 
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orthographic similarity and condition reflecting the tendency for interference in the 2- and 4-

bigram anagram conditions and facilitation in the “neighbor” conditions, F1(3, 77) = 7.95, 

MSE = 3223; F2(3, 124) = 8.07, MSE = 2925, both ps < .001. No other main effects or 

interactions were significant in the response time ANOVA.    

Table 7 

 

Mean Response Times and Error Rates obtained in Experiment 3   

 

                     Target Type  

    

        Low-Frequency        High-Frequency  Nonword 

 

Condition       RT         Error Rate          RT       Error Rate        RT           Error Rate 

   

0-Bigram  
 

   Similar 650 (13) 3.1 (0.7) 606 (12)   0.9 (0.4) 747 (16) 8.1 (1.3)   
 

   Control 655 (15) 2.7 (0.7) 592 (12)  1.3 (0.4) 759 (14)        6.3 (1.3) 
 

Difference     5 (11)       -0.4 (0.8)  -14  (9) 0.4 (0.5)   12 (13)       -1.8 (1.7) 

 
2-Bigram  
 

 Similar 656 (13) 2.2 (0.6) 606 (12)  1.9 (0.5) 757 (14) 7.7 (1.2) 
 

 Control 634 (14) 3.2 (0.7) 594 (11) 1.4 (0.5) 767 (15) 8.9 (1.5) 
 

Difference  -22 (10) 1.0 (0.9)  -12  (9)        -0.5 (0.7)   10 (13) 1.2 (1.6) 

 
4-Bigram 
 

 Similar 667 (13) 5.2 (0.9) 603 (12) 0.9 (0.4) 751 (14) 7.3 (1.3) 
 

 Control 647 (12) 2.8 (0.6) 591 (13) 1.3 (0.5) 744 (14) 9.7 (1.4) 
 

Difference  -20  (9)        -2.4 (1.0)  -12 (10) 0.4 (0.6)    -7 (13) 2.4 (1.6) 

 
“Neighbor” 
 

 Similar 611 (13) 2.0 (0.5) 568 (12) 1.3 (0.4) 743 (14) 6.1 (1.3) 
 

 Control 642 (13) 2.5 (0.6) 593 (13) 1.6 (0.5) 765 (16) 7.7 (1.4) 
 

Difference   31 (11) 0.5 (0.8)   25  (9) 0.3 (0.6)   22 (13) 1.6 (1.8) 

 

Note. Standard error of the mean appears in parentheses.  



www.manaraa.com

 60 

 Difference scores of the mean response times appear in Figure 7. Planned 

comparisons between the similar and control conditions for each of the orthographic 

conditions (0-bigram, 2-bigram, 4-bigram, “neighbor”) test for the presence of interference or 

facilitation resulting from orthographic similarity. These comparisons were performed for 

both high- and low-frequency targets across participants and items.  

 Interference for high-frequency targets when preceded by 0-bigram anagrams 

approached significance, t1(79) = 1.61, p = .111, SEM = 8.67; t2(63) = 1.81 p = .076, SEM = 

8.33. Responses were slower to low-frequency targets when preceded by 2-bigram anagrams, 

t1(79) = 2.07, p < .042, SEM = 10.49; t2(63) = 1.80, p = .077, SEM = 10.11, and low-

frequency targets when preceded by 4-bigram anagrams, t1(79) = 2.18, SEM = 9.36; t2(63) = 

2.52, SEM = 11.42, both ps < .05. In contrast, responses were faster for high- and low-

frequency word targets preceded by “neighbor” primes: low-frequency targets, t1(79) = -2.90, 

SEM = 10.69; t2(63) = -3.11, SEM = 10.70, both ps < .01; high-frequency targets, t1(79) = -

2.86, SEM = 8.73; t2(63) = -2.53, SEM = 9.79, both ps < .05. No other planned comparisons 

for response times reached significance.  

 Two separate ANOVAs (one subject, one item) were performed for error rates. 

Participants made significantly fewer errors to high-frequency targets (M = 1) compared to 

low-frequency targets (M = 3), F1(1, 79) = 32.04, MSE = .003; F2(1, 126) = 6.64, MSE = 

.011, both ps < .05. The interaction between target frequency and condition was significant in 

the subject analysis but not in the item analysis, F1(3, 77) = 3.97, p = .011, MSE = .002; F2(3, 

124) = 1.75, p = .159, MSE =.002. The interaction between target frequency, orthographic 

similarity, and condition also approached significance, F1(3, 77) = 2.26, p = .088, MSE = 
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.002; F2(3, 124) = 2.66, p = .051, MSE = .002. No other main effects or interactions in the 

ANOVA were significant.  

 Planned comparisons for error rates revealed significant interference for low-

frequency targets in the 4-bigram anagram condition, t1(79) = 2.30, SEM = .010; t2(63) = 

2.00, SEM = .012, both ps < .05. No other planned comparisons were significant for error 

rates.  

Nonword Target Trials 

 Two 2 x 4 repeated-measures ANOVAs (subject and item response time ANOVAs 

and subject and item error rate ANOVAs) with the variables orthographic similarity (similar, 

control), and condition (0-bigram, 2-bigram, 4-bigram, “neighbor”) were conducted across 

subjects and items. No main effects or interactions were significant in the response times or 

error rates.  

 
 

Figure 7. Mean differences between control and orthographically similar conditions in 

Experiment 3. Error bars represent the mean standard error of the difference. * p < .05;           

** p < .01; *** p < .001. 
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Discussion 

 The results for high-frequency targets are easily accommodated by the hypothesis that 

1) interference occurs when letters are shared between a prime and target, but those letters 

appear in the wrong position and 2) facilitation occurs when bigrams are shared between the 

prime and target (the LABL hypothesis). Because one letter was removed from the primes, it 

was expected that the amount of potential interference in the anagram conditions would be 

reduced. This appears to have been the case for high-frequency targets. In Experiment 2 

interference was found for high-frequency targets when preceded by 0-bigram and 4-bigram 

anagram primes. By comparison, interference only approached significance for high-

frequency targets in the 0-bigram anagram condition when partial-word primes were used.   

  Results for low-frequency targets were more varied and less easily explained by the 

LABL hypothesis. In Experiment 2, the only interference found for low-frequency targets 

approached significance in the 0-bigram condition. In contrast, the results of Experiment 3 

revealed interference for low-frequency targets in the 2- and 4-bigram anagram conditions. 

No hint of interference was found in the 0-bigram condition. If there is any validity to the 

LABL hypothesis, interference should not be found in the 2- and 4-bigram anagram 

conditions unless interference is also found in the 0-bigram anagram condition. Thus the lack 

of interference in the 0-bigram anagram condition is puzzling.  

 One possibility is that some characteristic of the primes in the low-frequency, 0-

bigram condition makes it difficult to find interference. This may, in fact, have been the case. 

It just happens that in this experiment the primes used in the low-frequency, 0-bigram 

condition were more wordlike (they had more neighbors) than the primes used in the 2- and 

4-bigram conditions as shown in Table 5. According to the competition model (Morris et al., 
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2009), nonword primes that are more wordlike are better encoded and would compete more 

with the target. This difference in encoding is evident by slower response times in the control 

conditions for the 0-bigram condition than in the 2- and 4-bigram conditions. When 

responses in the control condition are slower, there is less opportunity to observe 

interference. This may be why anagram interference was absent in the low-frequency, 0-

bigram condition.   

 In addition to the absence of interference in the 0-bigram anagram condition, the fact 

that interference was present for low-frequency targets but not high-frequency targets is 

puzzling. According to the LABL hypothesis, removing a letter from the prime should reduce 

the potential for anagram interference no matter the word frequency of the target. The 

competition model (Morris et al., 2009) has the potential to explain why interference is found 

for low-frequency words in Experiment 3 while interference was found for high-frequency 

words in Experiment 2. According to the competition model, primes with fewer letters are 

better encoded than primes with more letters, thus they are more likely to interfere with target 

processing. What this means for low-frequency targets is that interference can be found in the 

anagram conditions (Figure 8, Point A) and that interference may be “missing” from the 

high-frequency target conditions because the primes have passed the point at which they 

interfere with the target (Figure 8, Point B).  

 Although the anagram interference that was found for low-frequency targets was 

unexpected, there was one expected finding. Significant facilitation was observed for both 

high- and low-frequency targets when they were preceded by “neighbor” partial-word 

primes. The results of Experiment 3, for the most part, are consistent with the proposal that 

interference emerges when letters shared between the prime and target appear in different 
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positions, while bigrams shared between the prime and target lead to facilitation. Although 

the LABL hypothesis in its current form does not explain the entirety of the data, its 

explanatory power is greater than that of current models of word recognition.  

 

Figure 8. Point A represents an estimate of the encoding of low-frequency targets in anagram 

conditions in Experiment 3. Point B represents an estimate of the encoding of high-frequency 

targets in anagram conditions in Experiment 3.  

 

  



www.manaraa.com

 65 

CHAPTER 5. GENERAL DISCUSSION 

 The primary goal of this investigation was to replicate and extend Still and Morris’ 

(2008) finding of interference for word targets preceded by masked nonword anagram 

primes. This was accomplished in both Experiments 2 and 3. In combination with the 

findings of Still and Morris, the present investigation has revealed several characteristics of 

anagram interference: anagram interference can occur in shorter (four-letter) and longer (six-

letter) words; anagram interference is not limited to the 0-bigram anagram (mirror) condition; 

anagram interference can be found using partial-word primes (e.g., lspcm – CLAMPS); and 

anagram interference is modulated by prime exposure duration and target word frequency. 

Thus, the anagram interference is robust and should be considered by researchers who model 

word recognition or orthographic priming effects. 

 Another goal of this investigation was to gain some insight as to why interference 

from nonword anagrams has not been observed before as several studies have used nonword 

anagram primes. There are several differences between the current study and previous 

studies. Differences include whether or not partial-word primes were used, prime length, 

target length, target word frequency, and the number of bigrams shared between the prime 

and target (see Table 8). The characteristics of the experiments listed in Table 8 provide 

some indication as to why anagram interference has not been reported previously. First, the 

experiments generally used longer-length target stimuli with shorter prime exposure 

durations. The results of the present experiments and the data obtained by Still and Morris 

suggest that if short prime exposure durations are used, anagram interference is more likely 

to occur for short words than for long words. However, anagram interference can be found 

with longer-length word targets if a longer prime exposure duration is used (e.g., 70 ms). 
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Second, two of the experiments listed in Table 8 used partial-word primes that contained 

only four letters of the six or seven letters in the target. When fewer letters are present in the 

prime, the possibility to find anagram interference is likely reduced. Third, each anagram 

condition in the previous studies preserved some relative letter positions; this is apparent by 

the fact that at least one bigram was always shared between the prime and target.
10

 

Facilitation from shared bigrams could have offset any interference from shared letters 

appearing in the wrong positions. 

 Finally, as can be seen in Table 8 previous experiments did not investigate the effects 

of target word frequency, although there was a tendency to use low-frequency targets. In the 

present experiments the mean frequency for low-frequency targets was ten per million, while 

the mean frequency for high-frequency targets was 150 per million. Clear differences were 

found between low- and high-frequency targets with anagram interference occurring for 

high-frequency targets but not low-frequency targets in Experiment 2 and with more 

interference appearing in low-frequency targets than high-frequency targets in Experiment 3. 

The absence of significant interference in previous experiments may stem from the failure to 

manipulate word frequency. Based on the results of the present experiments, the optimal 

situation for obtaining anagram interference with longer length targets would include using 

high-frequency targets and longer prime exposure durations. Also, the present results indicate 

that when interference is found for high-frequency targets, for example, a null effect was 

found for low-frequency words. If frequency is not well controlled, the effects could be 

                                                 
10

 One exception appears to be Guerrara and Forster’s (2008) 43218765 anagram condition. It does not preserve 

any bigrams as defined by Schoonbaert and Grainger (2004), but several letters do appear in the correct relative 

position (e.g., letters four and eight in the 43218765 prime condition)   
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obscured as interference may only occur for a subset of the stimuli. In short, there are several 

possible explanations for why anagram interference has not been found previously. 

 

Table 8 

 

“Scrambled” Primes used in Previous Experiments    

      

       

             Target            Prime  

  

Article            Experiment     Length    Frequency          Duration        Letter            Shared  

                  in ms        Order     Bigrams 

 

   

Peressotti &        3a     6         NA  33        1346         5  

Grainger (1999)              6341         1  

                1436         4  

 

Grainger et al.        1b     7        7-175  50       1-543-7          2  

(2006)              7-345-1         3 

 

          6     7       M = 29  33        1537                 2 

                7351          1 

                83        1537         2 

                7351          1 

 

Guerrera &       1a,1b    8       M = 34   40    13254768        12 

Forster (2008)           21345687        14 

 

          2     8       M = 28            40    13254768        12 

            12436587        13 

            21436578        13 

 

          3     8       M = 34            40    13254768        12 

                   21436587            13 

            43218765         0 

 

 

Note. Recent experiments that failed to find interference from nonword anagram primes. In 

Grainger et al. (2006, Experiment 6) the prime was not preceded by a pattern mask. 

Frequency measures are per million.  
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The LABL Hypothesis 

 Still and Morris’ (2008) LABL hypothesis was intended to provide an explanation for 

how interference emerges in mirror (0-bigram) anagrams but not in another anagram 

condition in which some bigrams were shared between the prime and target. It was proposed 

that interference from letters appearing in different positions in the prime and target could be 

offset by facilitation that occurs when primes and targets share bigrams. In this regard, 

testing the LABL hypothesis was straightforward; the hypothesis would be supported if 

additional evidence of a tradeoff between interference and facilitation was found in the 

present experiments, and the hypothesis would be disconfirmed if no evidence of a tradeoff 

was found.  

 In general, the results from the present experiments support the LABL hypothesis, but 

the results also show that the LABL hypothesis was underspecified. The hypothesis predicts 

that targets preceded by anagram primes that share few bigrams (e.g., 0-bigram, 2-bigram, 4-

bigram) with the target should result in interference, while anagram primes sharing more 

bigrams (8-bigram and neighbors) with the target should result in facilitation. The 

combination of the results of both Experiments 1 and 2 support these predictions, but there is 

substantially less support for the LABL hypothesis if the results of either experiment are 

examined in isolation. In Experiment 1, facilitation was found in the 8-bigram and neighbor 

conditions for low-frequency targets. Interference was found in Experiment 2 for high-

frequency targets in the 0- and 4-bigram anagram conditions. No interference was found in 

Experiment 1, and no facilitation was found for the 8-bigram anagram condition in 

Experiment 2. What these results suggest is that prime exposure duration affects the 

likelihood of observing facilitation or interference with facilitation emerging with brief prime 
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exposure durations and interference emerging only with longer prime exposure durations. 

The implication is that facilitation and interference follow different time courses. Thus, the 

only way the LABL hypothesis could account for these data is by assuming that either 

facilitation emerges faster than interference or that the relative strengths of facilitation and 

interference change with prime exposure duration (e.g., facilitation is stronger than 

interference early on, but decreases with increased prime exposure duration).   

 A second finding that challenges the LABL hypothesis is how target word frequency 

influences interference and how that influence changes over time. Across Experiments 1 and 

2 low-frequency targets generally yielded facilitation while high-frequency targets generally 

yielded interference. It is possible that the LABL hypothesis could be modified to account for 

the frequency results of Experiments 1 and 2. Using an explanation put forth in the 

introduction, perhaps the slower response to low-frequency words (in comparison to high-

frequency words) allows them to benefit more from facilitation. In addition, because low-

frequency words are responded to more slowly, it would be more difficult to demonstrate 

interference with them. In contrast, high-frequency words are responded to more quickly, so 

facilitation is more difficult to detect, while interference is easier to detect. While these 

additional assumptions would allow the LABL hypothesis to describe the majority of the 

data, they do not explain all of the results in Experiment 3.  

 The LABL hypothesis predicts that interference should be weaker when one letter is 

removed from the prime. This prediction holds for the high-frequency targets, as interference 

only approached significance in the 0-bigram condition and was not significant in the 2- or 4-

bigram anagram conditions (recall that interference for both 0- and 4-bigram conditions was 

significant in Experiment 2). The problematic results are those for low-frequency targets, as 
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interference was found in both the 2- and 4-bigram anagram conditions (in Experiment 2, 

interference for the 0-bigram anagram condition only approached significance). From these 

results it appears that removing one letter from the prime either increased the interference or 

decreased the facilitation for low-frequency words. In either case, the results cannot be 

accounted for by the LABL hypothesis alone. This is not surprising as the purpose of the 

LABL hypothesis was simply to suggest the presence of two influences on orthographic 

priming effects. At this point what should be considered is how the present data and the 

LABL hypothesis could be used to inform explanations of word recognition and masked 

orthographic priming.  

A Word Recognition Framework Explanation  

 The finding of nonword anagram interference cannot be explained by any current 

models of word recognition. Interference is expected with word primes, not nonword primes. 

One question is whether or not current models could be adapted to account for anagram 

interference. Apart from the letter position coding scheme, most models of word recognition 

make predictions that are quite similar to those of the IA model. The predictions are similar 

because most models make similar assumptions about lexical inhibition and word frequency. 

Therefore, discussion of how models of word recognition might be modified to account for 

these data is presented in terms of a generic word recognition model. 

 Explaining interference for nonwords is difficult. There are at least two ways this 

might be accomplished. One method involves modifying the criteria for lexical inhibition; 

the other method involves assuming qualitatively different contributions of individual letters 

and of bigrams to word recognition. In either case, the modification must be able to account 

for anagram interference and relative position priming effects.     
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 Several modifications would be necessary to explain how lexical inhibition could be 

responsible for anagram interference. The inhibitory connections between lexical units act as 

a “clean up” mechanism allowing for faster settling times. In the original IA model an 

activated word representation inhibits all other word representations (McClelland & 

Rumelhart, 1981), but in subsequent versions of the model selective inhibition has been used 

as it produces better model fits. In particular, Davis and Lupker (2006) suggested that 

inhibition should be restricted to word representations sharing at least one letter in the same 

position with the input string. A possible modification would be to increase the scope of 

lexical inhibition so that an activated word representation would inhibit more word 

representations. This could be done by implementing a system in which words sharing letters 

in any position with the input string are inhibited. If it were also assumed that word 

representations of any length inhibit one another, activation of a single word representation 

would have the potential to inhibit many word representations. With this assumption even 0-

bigram anagram primes would likely activate word representations that would compete with 

the target for recognition. For example, any anagram of the target THRONE would activate, 

at minimum, the following competitors: ton, horn, tone, one, north, ore, thorn, ten, hen, rent, 

note, enthrone. The inhibition of these “subset” and “superset” words could be seen as an 

extension of Bowers, Davis, and Hanley’s (2005) finding that interference can occur for 

words that are subsets (e.g., participants are slower to reject drama as a type of animal) or 

supersets (e.g., participants are slower to reject seep as a type of animal) of one another. 

 Simply modifying the selective inhibition criterion may be insufficient to explain 

both anagram interference and facilitation typically found with orthographically similar 

nonword primes. In the IA model, the inhibitory mechanism acts based on the overall 
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activation of the word representation so that when one representation is active it sends 

inhibition proportionate to its own activation level. The activated word representations send 

inhibition to all other word representations whose activation levels are greater than zero 

(McClelland & Rumelhart, 1981). In order for both lexical inhibition and facilitation from 

shared bigrams to be implemented, separate word representations would be required. This 

could be done by creating two parallel systems, with one responsible for facilitation and the 

other responsible for inhibition. The “inhibition system” would require at least three levels – 

feature, letter, and lexical – with the letter level containing position-independent letter 

representations. Both systems would work in parallel with the output of the word recognition 

system consisting of the sum of the activation levels of the word representations in the 

inhibition and facilitation systems (see Figure 9 for the general architecture of this proposed 

modification).  

 

Figure 9. Generic model of word recognition with modifications to the lexical inhibition 

criterion. Arrows indicate activation passing from one level to the next. Lines with circle 

terminators indicate the presence of inhibitory connections.     
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 A second option for accounting for anagram interference would be to assume that 

both individual letters and bigrams have direct influence on the activation levels of the same 

word representations. In the previous option it was suggested that letter representations 

would be position independent. In contrast, the present option would use position-specific 

letter representations which inhibit word representations that contain the same letters as the 

input string when those letters appear in the wrong position. For example, the e in enorht 

would inhibit throne and any other word containing an e in a position other than the first 

position. This type of inhibition could be implemented by assuming that when a letter 

appears in a specific position, the activation level of that position-specific letter 

representation will be higher than that of the same letter representation in another position 

(e.g., for the prime enorht the e in position one has higher activation than the e in position 

two or three) and that inhibitory connections exist between letter positions (e.g., inhibitory 

connections exist between the e in position one and the e in position two, between the e in 

position one and the e in position three, etc.). The inhibition of lexical representations from 

position-specific letter representations and the facilitation from the already implemented 

bigram/relative position coding system would both contribute to the activation level of word 

representations (see Figure 10 for the general architecture of this proposed modification).  

 Whichever way anagram interference is accounted for, word recognition models 

would have to include some explanation for how facilitation and interference change over 

time or with various prime exposure durations. One way to implement this might be to 

assume that it takes more time (or takes more accumulated activation) for letter or word units 

to inhibit one another than for sublexical units to activate word representations. With these 
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assumptions facilitation would tend to emerge earlier, or with shorter prime exposure 

durations, than interference. 

 

Figure 10. Generic model of word recognition with the primary modification being the 

addition of position-specific letter representations. Arrows indicate activation passing from 

one level to the next. Lines with circle terminators indicate the presence of inhibitory 

connections.    

  

 Even with these substantial modifications, word recognition models would have 

difficulty explaining the way in which interference was modulated by target word frequency 

in Experiments 2 and 3. A general approach to modeling word frequency is to implement a 

higher resting level of activation for high-frequency words and a lower resting level of 

activation for low-frequency words. Because inhibitory effects are tied to the activation level 

of a word representation, higher-frequency words tend to inhibit lower-frequency words, but 

lower-frequency words only weakly inhibit higher-frequency words. What this means is that 

interference should be found less often for high-frequency words than for low-frequency 

words. This was true in Experiment 3, but not in Experiment 2. It is not clear what 

modifications could account for these word frequency effects. The only way to know if the 

proposed modifications could account for these data is by running a full simulation.    
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Competitive Interactions between Primes and Targets     

 It is possible that, with some modifications, the competition model could provide an 

adequate explanation of the entire pattern of results reported in this dissertation. Before 

getting to the specific modifications, additional discussion of encoding effects in the 

competition model is warranted. Recall that encoding refers to the accuracy and/or speed 

with which an individual item is processed and encoding is modeled by signal-to-noise ratio 

in the representation (e.g., poorly encoded items have a lower signal-to-noise ratio than items 

that are better encoded). Characteristics of items that are poorly encoded include those with 

nonword lexical status, that have short exposure durations, that are low-frequency (in 

comparison to high-frequency words), and have low-density neighborhoods (Morris et al., 

2009; Morris & Still, 2008; Still & Morris, 2007). A poorly-encoded item generally competes 

less effectively for access to awareness than a well-encoded item.  

 When a prime and target are orthographically similar, the outcome (i.e., facilitation or 

interference) depends, in part, on how well the prime is encoded. A poorly-encoded prime 

competes minimally with the target for access to awareness, but the target still benefits from 

an increased signal-to-noise ratio. The result is that recognition of the target is facilitated (see 

Figure 11, Point A). When a prime is better encoded it competes more effectively with the 

target, but now the reduction in total activation that accompanies the increased signal-to-

noise ratio hinders recognition of the target. The result is that recognition of the 

orthographically similar target is slowed (see Figure 11, Point C). Figure 11 depicts a 

function that represents the difference between the outcome of the competition for an 

orthographically similar prime and target and a control prime and target. From this function, 

one can see how facilitation for a target can become interference if the encoding of the prime 
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or target is increased. This function will be used as an aid for describing how the variables 

investigated in the present experiments could be conceptualized as encoding effects within 

the competition model.  

 

Figure 11. Generic function depicting the outcome of a competitive interaction between a 

prime and a target as proposed by the competition model.        

 

 The competition model was designed specifically to predict the outcome of 

competitive interactions between items presented in close temporal proximity, but one 

challenge to applying the competition model to word recognition research is that it makes 

very basic assumptions about letter position coding. As mentioned previously, the original 

implementation of the model used position-independent letter representations. Based on the 

present results and those of Still and Morris (2008) it could be argued that two sublexical 

units – one that is position independent and one that is based on bigrams or relative letter 

positions – should be used conjointly to compute orthographic similarity in the competition 

model. Thus one modification to the competition model would be to add a bigram level of 

representation. Unlike the modifications suggested for word recognition models or the LABL 
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hypothesis, the two “systems” of letter position coding used in the competition model would 

operate under similar assumptions – i.e., it would not be assumed that the position-

independent system is responsible for interference while the bigram system is responsible for 

facilitation. An encoding assumption would be made in which individual letters are encoded 

better than bigrams. The representations for individual letters are so well encoded that even 

with short prime exposure durations (e.g., 35 ms in Experiment 1) interference is obtained. In 

order to obtain facilitation with this letter coding system, prime exposure durations would 

have to be shorter than they are in Experiment 1. In contrast, bigrams are more poorly 

encoded. What this means is that with the prime exposure durations used in the present 

experiments, orthographic similarity in the bigram system tends to lead to facilitation. Based 

on this encoding assumption, it should be possible to find interference from shared bigrams 

between the prime and target if encoding of the bigrams was improved. This could be 

conceptualized as moving from Point A to Point C on Figure 11.    

 Encoding differences can also be used to describe how orthographic priming effects 

are modulated by prime exposure duration and target word frequency. Primes with shorter 

exposure durations (e.g., Experiment 1) compete less effectively against the target; thus, 

responses to orthographically similar targets will tend to be facilitated. When exposure 

durations are longer (e.g., Experiments 2 and 3) the prime competes more with the target 

allowing the opportunity for interference to emerge. Encoding differences in the target also 

affect the outcome of the competition. High-frequency words are better encoded than low-

frequency words. In terms of the general function in Figure 11, high-frequency words would 

be further right on the continuum than low-frequency words. For example, in Experiment 1 

low-frequency words might be near Point A in Figure 11 while high-frequency words might 
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be near Point B. In Experiment 2, the outcome for low-frequency targets would be near Point 

B and for high-frequency targets would be near Point C. This illustrates how, at times, 

responses to lower-frequency words tend to be facilitated (e.g., Experiment 1) while 

responses to higher-frequency words tend to be interfered with (e.g., Experiment 2).  

 The explanation for the results of Experiment 3 is more complex. The prime exposure 

duration and the targets were the same in Experiments 2 and 3, but interference was limited 

to high-frequency targets in Experiment 2 and to low-frequency targets in Experiment 3. 

First, one must consider what happens when one letter is removed from the prime. According 

to the LABL hypothesis, interference should be reduced when one letter is removed. But, 

according to the competition model, encoding is affected by the length of the letter string, 

with shorter-length letter strings being better encoded than longer-length letter strings 

(Morris & Still, 2009). By removing one letter from the prime in Experiment 3, the prime is 

better encoded and interferes with the target as illustrated in Figure 11 by moving further to 

the right on the encoding continuum. Notice that when encoding increases to a certain point 

the magnitude of interference subsides. Thus with the increased encoding of the prime it is 

possible that the high-frequency targets have passed the point at which they demonstrate 

significant interference (Figure 11, Point D), but low-frequency targets have just reached a 

point at which they can demonstrate interference (Figure 11, Point C). As is apparent from 

this description of the competition model, competitive interactions between items are based 

on a number of characteristics; therefore, only a full simulation of the model would indicate 

whether or not these suggested modifications could account for the present data. Despite the 

inherent complexity of the interactions present in the competition model, it should be noted 
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that only one primary assumption of the competition model – letter position coding – would 

need to be changed to potentially account for these data.   

Feasibility of Anagram Interference    

 The goal of this research was to further investigate a surprising finding of anagram 

interference. Not only had the effect never been reported before, it was not predicted by any 

model of word recognition. It is likely that the effect was not reported before because there 

was no a priori reason to suspect that a nonword anagram would interfere with processing of 

a word target. Therefore one might ask why a system solely designed to recognize words 

would seemingly prioritize a nonword over a word. But there are alternative ways to 

conceptualize the issue. Perhaps interference is a byproduct of a type of “clean up” in the 

word recognition system that is meant to reduce noise. In current models of word 

recognition, interference emerges from the inhibitory connections between word 

representations. Those inhibitory connections increase the efficiency of the word recognition 

system by leading to faster selection in the model. If the proposed lexical inhibition 

modifications were implemented for models of word recognition so that anagrams inhibited 

many word representations, anagram interference would follow naturally from the 

mechanisms responsible for efficient word recognition.  

 A similar explanation is that anagram interference is indicative of a mechanism meant 

to eliminate improbable candidate word representations that may have been activated during 

an earlier stage of word recognition. One possibility is that the bigram/facilitatory system 

works to rapidly activate multiple target candidates, while the letter/inhibitory system works 

to eliminate candidates whose letters appear in the wrong positions. This type of explanation 

could be consistent with the observation that early word recognition processes appear to be 



www.manaraa.com

 80 

less sensitive to absolute letter position than later stages in the recognition process (e.g., 

Grainger et al., 2006; Kinoshita & Norris, 2009). The implication of this type of system 

would be that word recognition involves a tradeoff between speed and accuracy. The benefits 

of a faster system that activates multiple word candidates, many of which will have to be 

inhibited, may outweigh the cost of a slower, more accurate system. 

 The competition model explanation for the existence of anagram interference is quite 

different. In the model, interference is a byproduct of competitive interactions between items. 

Any item, or in this case sublexical unit, that is well encoded will be more likely to result in 

interference than if it were poorly encoded. Therefore the apparent difference between 

processing of letters and bigrams could simply be a difference in encoding. Encoding 

differences would likely be related to the fact that letters are smaller units than bigrams and 

individual letters are, by necessity, encountered more often than bigrams. In short, no matter 

which of the three explanations is adopted, some explanation could be found for why 

anagram interference can be obtained.    

 Related to the question of the utility of anagram interference, is the issue of what 

sublexical code(s) is responsible for word recognition. Most models of word recognition 

propose the existence of multiple sublexical units, with only one of the sublexical units (e.g., 

bigram or individual letter) having direct influence on the activation of word representations. 

In contrast, the results of the present experiments have been interpreted as if two sublexical 

representations have direct influence on the activation of word representations. Whether one 

sublexical representation or two are used in word recognition is an empirical question. At 

present, it is unclear how anagram interference and previous orthographic priming findings 

could be accounted for without the influence of two sublexical units on word representations.  
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Reading and the Time Course of Facilitation and Interference 

  A final consideration is how masked orthographic priming results relate to reading. 

On the one hand reading is much different from masked orthographic priming, with the most 

obvious difference being that many words have to be recognized during reading, but only one 

word has to be recognized during orthographic priming. On the other hand, both reading and 

masked orthographic priming require words to be recognized. A large body of relevant 

reading research has come from eye movement studies. In these paradigms, participants’ eye 

movements are tracked with the assumption that participants will fixate longer on or make 

more regressions (look back) to a word when processing is difficult (Rayner, 1998). The 

studies most comparable to masked orthographic priming use the boundary technique 

(Rayner, 1975) whereby one item in the sentence (preview) is replaced with another word 

(the target) before the reader fixates on it. The replacement occurs during a saccade so that 

the reader does not perceive the change. This design allows researchers to investigate what 

kind of processing occurs for a word before it is fixated – referred to as parafoveal preview – 

by observing participant responses to the target.   

 One eye movement experiment is of particular relevance to the present finding that 

facilitation emerges earlier than interference. Williams, Perea, Pollatsek, and Rayner (2006) 

investigated the influence of neighbor frequency on eye movements. The target was a low-

frequency word (e.g., sleet) and it was replaced by a higher-frequency neighbor (e.g., sweet), 

by a nonword neighbor (e.g., speet) or by itself (this was essentially a condition where no 

replacement was made). Results indicated that fixation durations when the target was 

previewed by a higher-frequency word were statistically indistinguishable from when the 

target was previewed by itself. This result was unexpected. Models of word recognition 
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predict that lower-frequency words are inhibited by higher-frequency word neighbors. What 

the eye movement results indicate is that the inhibitory processes that occur during word 

recognition may be inoperative during parafoveal preview. Williams et al. summarized the 

implications of these results by suggesting that processing of words involves two processes, 

an early stage (parafoveal preview) that encodes letter identities and activates word 

representations, and a later stage (fixation) in which lexical inhibition occurs. 

 The Williams et al. (2006) suggestion that facilitation emerges earlier than 

interference parallels the findings in the present experiment in which facilitation was 

obtained with short prime exposure durations and interference was obtained with longer 

prime exposure durations. One suggested explanation for the feasibility of anagram 

interference was that the word recognition system first activates several candidate words and 

then eliminates candidates if the letters appear in the wrong positions. A word recognition 

system operating under those assumptions would be similar to Williams et al.’s two-stage 

explanation. Thus, the eye movement literature provides converging evidence suggesting the 

operation of two systems in word recognition. Additional research is needed to examine 

whether or not facilitation is observed when the parafoveal preview is a nonword anagram; 

this would test the assumption that no inhibition occurs during parafoveal preview.    

Conclusions 

 Still and Morris’ (2008) finding that nonword anagram primes can interfere with 

target word processing was unexpected. The present experiments replicated and extended 

that finding. It was demonstrated that interference from anagrams can be found in shorter- 

and longer-length words; the effects vary by target word frequency, prime exposure duration, 

and prime length; interference is not limited to one type of anagram, but can be found in 0-, 
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2-, and 4-bigram anagrams. In most models of word recognition, the only source of 

interference is inhibition between word representations. Thus, models of word recognition 

have difficulty explaining how a nonword prime – that is not very wordlike – comes to 

inhibit a word representation. In addition to replicating and extending the anagram 

interference finding, this investigation revealed that in masked orthographic priming, 

facilitation was more likely to be observed with short (e.g., 35 ms) prime exposure durations 

while interference emerges with longer prime exposure durations (e.g., 70 ms). Finally, the 

pattern of facilitation and interference across the three experiments suggests that at least two 

sublexical representations are involved in word recognition. Further research is needed to 

determine the nature of these sublexical units and to determine whether or not current word 

recognition models can account for anagram interference. 
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APPENDIX A. WORD TARGET STIMULI USED IN EXPERIMENTS 1 AND 2  

 Targets                Prime Type          Targets        Prime Type 

 
Low Freq     0-Bigram    4-Bigram   8-Bigram    Neighbor           High Freq    0-Bigram   4-Bigram   8-Bigram    Neighbor 

  

 

1 crowds       sdworc        wscdor      rcwosd        crolds   1 claims        smialc        iscmal         lciasm         cleims 

1 knight  thgink  gtkhin  nkgith knught   1 fourth   htruof    rhftuo   ofruht foudth 

2 blonde  ednolb nebdol lbnoed blonfe 2 fields  sdleif    lsfdei  iflesd fiulds 

2 script  tpircs itsprc csirtp scrupt 2 growth  htworg    whgtor  rgwoht grodth 

3 plunge  egnulp nepgul lpnueg plufge 3 bridge  egdirb    debgir  rbdieg brikge 

3 charts  strahc rsctah hcrast chirts 3 months  shtnom    tsmhno  omtnsh munths 

4 towers  srewot estrwo otewsr tojers 4 points  stniop    nsptio  opnist poikts 

4 launch  hcnual nhlcua alnuhc laumch 4 charge  egrahc    recgah  hcraeg charde 

5 guards  sdraug rsgdau ugrasd guamds 5 friend dneirf    edfnir  rfeidn frield 

5 client  tneilc etcnil lceitn cloent 5 bought  thguob    gtbhuo  obguth boaght 

6 clamps  spmalc mscpal lcmasp clamds 6 should  dluohs    udsloh  hsuodl scould 

6 throne  enorht oetnrh htoren thione 6 breath  htaerb    ahbter  rbaeht breaph 

7 knives  sevink vskein nkvise kniles 7 struck  kcurts    ukscrt  tsurkc stwuck 

7 coward  drawoc adcrwo ocawdr cozard 7 joined  denioj    ndjeio  ojnide joibed 

8 lounge  egnuol nelguo olnueg lounte 8 spring  gnirps    igsnrp  psirgn sprihg 

8 bricks  skcirb csbkir rbcisk bwicks 8 talked  deklat    kdtela  atklde tolked 

9 flavor  rovalf vrfoal lfvaro flivor 9 myself  flesym    efmlsy  ymesfl mywelf 

9 bucket  tekcub ktbecu ubkcte bunket 9 action  noitca    inaotc  caitno astion 

10 jungle   elgnuj gejlnu ujgnel junzle 10 county  ytnuoc      nyctuo  ocnuyt coanty 

10 format   tamrof mtfaro ofmrta forbat 10 simple  elpmis    peslmi  ispmel simdle 

11 bishop  pohsib hpbosi ibhspo bithop 11 factor  rotcaf    trfoca  aftcro fuctor 

11 cradle  eldarc declar rcdael cravle 11 single  elgnis    geslni  isgnel sidgle 

12 typing  gnipyt igtnpy ytipgn tyding 12 moving  gnivom    igmnvo  omivgn mocing 

12 locker  rekcol krleco olkcre lohker 12 beauty  ytuaeb    uybtae  ebuayt beaupy 

13 hotels  sletoh eshlto ohetsl hutels 13 father  rehtaf    hrfeta  afhtre fabher 

13 fabric  cirbaf rcfiba afrbci fapric 13 column  nmuloc    uncmlo   oculnm codumn 

14 guitar  ratiug trgaiu ugtira guiwar 14 sunday  yadnus    dysanu  usdnya sunkay 

14 dozens   snezod esdnzo odezsn dolens 14 permit  timrep    mtpire  epmrti perfit 

15 turkey  yekrut kyteru utkrye turpey 15 island  dnalsi    adinls  sialdn islamd 

15 finals  slanif asflni ifansl fonals 15 poetry  yrteop    typreo  opteyr poegry 

16 walnut  tunlaw ntwula awnltu wolnut 16 making  gnikam    igmnka  amikgn muking 

16 prizes  sezirp zspeir rpzise phizes 16 theory  yroeht    oytreh  htoeyr theoly 

17 clergy  ygrelc rycgel lcreyg clerpy 17 trying  gniyrt    igtnyr  rtiygn tryang 

17 domain  niamod andimo odamni dotain 17 volume  emulov    uevmlo  ovulem vobume 

18 fluids  sdiulf isfdul lfiusd fluigs 18 taking  gnikat    igtnka  atikgn tyking 

18 export  tropxe oterpx xeoptr ebport 18 couple  elpuoc    pecluo  ocpuel coudle 

 

Note. The numbers indicate which items were yoked to create control conditions (e.g., 

sdworc was the 0-Bigram control for KNIGHT). Targets appeared in uppercase in the 

experiments. 
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 Targets                Prime Type          Targets        Prime Type 

 
Low Freq     0-Bigram    4-Bigram   8-Bigram    Neighbor           High Freq    0-Bigram   4-Bigram   8-Bigram    Neighbor 

  

 

19 voyage  egayov aevgyo ovayeg vobage 19 coming  gnimoc     igcnmo  ocimgn cyming 

19 insult  tlusni utilsn niustl indult 19 values  seulav    usvela  avulse vadues 

20 spiral  larips rlsaip psrila spigal 20 acting  gnitca    igantc  caitgn akting 

20 monkey  yeknom kymeno omknye motkey 20 double  elbuod    bedluo  odbuel dousle 

21 tubing  gnibut igtnbu utibgn tufing 21 symbol  lobmys    blsomy  ysbmlo sumbol 

21 makers  srekam esmrka ameksr mahers 21 advice  ecivda    ieacvd  daivec adwice 

22 sodium  muidos imsudo osidmu sonium 22 almost  tsomla   otasml  laomts alvost 

22 gravel  levarg vlgear rgvale grafel 22 figure  erugif    uefrgi  ifuger fipure 

23 boxcar  racxob crbaxo obcxra boxtar 23 around  dnuora    udanor  rauodn aroynd 

23 sewing  gniwes igsnwe esiwgn sewung 23 itself  flesti    efilst  tiesfl itgelf 

24 denial  lained ildane edinla desial 24 method  dohtem    hdmote  emhtdo mechod 

24 trophy  yhport pythor rtpoyh truphy 24 asking  gniksa    iganks  saikgn alking 

25 debris  sirbed rsdibe edrbsi detris 25 impact  tcapmi    aticpm  miaptc imsact 

25 layout  tuoyal otluya aloytu lavout 25 broken  nekorb    knbeor  rbkone bruken 

26 jockey  yekcoj kyjeco ojkcye jocley 26 budget  tegdub    gtbedu  ubgdte budgit 

26 unfair  riafnu aruifn nuafri umfair 26 normal  lamron    mlnaro  onmrla nosmal 

27 topics  scipot istcpo otipsc tapics 27 travel  levart    vltear  rtvale trapel 

27 bundle  eldnub deblnu ubdnel buhdle 27 cousin  nisuoc    snciuo  ocsuni couwin 

28 python  nohtyp hnpoty yphtno pyghon 28 during  gnirud    igdnru  udirgn durong 

28 serial  laires ilsare esirla sepial 28 places  secalp    cspeal  lpcase ptaces 

29 judges  segduj gsjedu ujgdse judbes 29 forest  tserof    etfsro  oferts forast 

29 anchor  rohcna hraocn nahcro alchor 29 public  cilbup    lcpibu  uplbci punlic 

30 coping  gnipoc igcnpo ocipgn copung 30 social  laicos    ilsaco  osicla sogial 

30 metals  slatem asmlte ematsl metyls 30 number  rebmun    brnemu  unbmre nohber 

31 kidney  yendik nykedi ikndye kidpey 31 signal  langis    nlsagi  isngla sigmal 

31 mortal  latrom tlmaro omtrla murtal 31 object  tcejbo    etocjb  boejtc obfect 

32 mating  gnitam igmnta amitgn matung 32 junior  roinuj    irjonu  ujinro juzior 

32 shovel  levohs vlseoh hsvole swovel 32 sample  elpmas    peslma  aspmel samgle 

 

 

Note. The numbers indicate which items were yoked to create control conditions (e.g., 

sdworc was the 0-Bigram control for KNIGHT). Targets appeared in uppercase in the 

experiments. 
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APPENDIX B. WORD TARGET STIMULI USED IN EXPERIMENT 3  

 Targets                       Prime Type                     Targets        Prime Type 

 
Low Freq    0-bigram     2-bigram   4-bigram   “Neighbor”       High Freq        0-bigram    2-bigram   4-bigram   “Neighbor” 

  

 

1 crowds  sdwrc rsdcw dcsrw crwds 1 claims smilc lsmci  mcsli clims 

1 knight  thgnk nthkg hktng knght 1 ground dnurg rdngu  ngdru grund 

2 blonde  ednlb ledbn dbeln blnde 2 fields sdlif isdfl  dfsil filds 

2 script  tpics ctpsi pstci scipt 2 growth htwrg rhtgw  tghrw grwth 

3 plunge  egnlp legpn gpeln plnge 3 plants stnlp lstpn  tpsln plnts 

3 charts  strhc hstcr tcshr chrts 3 bridge egdrb regbd  gberd brdge 

4 towers  sreot osrte rtsoe toers 4 points stnop ostpn  tpson ponts 

4 launch  hcnal ahcln clhan lanch 4 charge egrhc hegcr  gcehr chrge 

5 guards  sdrug usdgr dgsur gurds 5 friend dnerf rdnfe  nfdre frend 

5 client  tnelc ltnce nctle clent 5 bought thgob othbg  hbtog boght 

6 clamps  spmlc lspcm pcslm clmps 6 should dluhs hdlsu  lsdhu shuld 

6 throne  enoht hento nteho thone 6 breath htarb rhtba  tbhra brath 

7 knives   sevnk nsekv eksnv knves 7 player reylp lrepy  eprly plyer 

7 coward    draoc odrca rcdoa coard 7 things sgnht hsgtn  gtshn thngs 

8 lounge  egnol oegln gleon longe 8 course esroc oescr  sceor corse 

8 bricks  skcrb rskbc kbsrc brcks 8 flight thglf lthfg  hftlg flght 

9 flavor  rovlf lrofv ofrlv flvor 9 myself fleym yflme  lmfye myelf 

9 bucket  tekub utebk ebtuk buket 9 action noica cnoai  oanci acion 

10 jungle  elguj ueljg ljeug jugle 10 county ytnoc oytcn  tcyon conty 

10 format  tamof otafm aftom fomat 10 simple elpis ielsp  lseip siple 

11 bishop  pohib ipobh obpih bihop 11 factor rotaf aroft  ofrat fator 

11 cradle   eldrc relcd lcerd crdle 11 single elgis ielsg  lseig sigle 

12 nudist   tsiun utsni sntui nuist 12 moving gniom ognmi  nmgoi moing 

12 locker  rekol orelk elrok loker 12 beauty ytueb eytbu  tbyeu beuty 

13 hotels  sleoh oslhe lhsoe hoels 13 father rehaf arefh  efrah faher 

13 fabric  ciraf acifr ifcar faric 13 column nmuoc onmcu  mcnou coumn 

14 guitar  ratug uragt agrut gutar 14 sunday yadus uyasd  asyud suday 

14 dozens  sneod osnde ndsoe doens 14 permit timep etipm  iptem pemit 

15 turkey  yekut uyetk etyuk tukey 15 island dnasi sdnia  nidsa isand 

15 finals  slaif islfa lfsia fials 15 poetry yrtop oyrpt  rpyot potry 

16 walnut  tunaw atuwn uwtan wanut 16 toward draot odrta  rtdoa toard 

16 prizes  sezrp rsepz epsrz przes 16 inches sehni nseih  eisnh inhes 

17 clergy  ygrlc lygcr gcylr clrgy 17 trying gnirt rgnti  ntgri tring 

17 domain  niaod onida idnoa doain 17 volume emuov oemvu  mveou voume 

18 fluids  sdilf lsdfi dfsli flids 18 taking gniat agnti  ntgai taing 

18 export  troxe xtreo retxo exort 18 couple elpoc oelcp  lceop cople 

 

Note. The numbers indicate which items were yoked to create control conditions (e.g., sdwrc 

was the 0-Bigram control for KNIGHT). Targets appeared in uppercase in the experiments. 
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 Targets                       Prime Type                         Targets        Prime Type 

 
Low Freq    0-bigram     2-bigram   4-bigram   “Neighbor”           High Freq     0-bigram    2-bigram   4-bigram   “Neighbor” 

  

 

19 voyage  egaov oegva gveoa voage 19 coming gnioc ognci  ncgoi coing 

19 insult  tluni ntliu litnu inult 19 values seuav asevu  evsau vaues 

20 spiral  larps plasr aslpr spral 20 theory yroht hyrto  rtyho thory 

20 monkey  yekom oyemk emyok mokey 20 fiscal lacif ilafc  aflic fical 

21 tubing  gniut ugnti ntgui tuing 21 symbol lobys ylosb  oslyb sybol 

21 makers  sream asrme rmsae maers 21 advice ecida decai  caedi adice 

22 sodium  muios omusi usmoi soium 22 almost tsola ltsao  satlo alost 

22 gravel  levrg rlegv eglrv grvel 22 figure eruif ierfu  rfeiu fiure 

23 boxcar  racob orabc abroc bocar 23 around dnura rdnau  nadru arund 

23 sewing  gnies egnsi nsgei seing 23 itself fleti tflie  lifte itelf 

24 denial  laied eladi adlei deial 24 method dohem edomh  omdeh mehod 

24 trophy  yhprt ryhtp htyrp trphy 24 asking gnisa sgnai  nagsi asing 

25 riches  sehir iserh ersih rihes 25 impact tcami mtcia  citma imact 

25 layout  tuoal atulo ultao laout 25 broken nekrb rnebk  ebnrk brken 

26 jockey  yekoj oyejk ejyok jokey 26 budget tegub utebg  ebtug buget 

26 unfair  rianu nriua iurna unair 26 normal lamon olanm  anlom nomal 

27 topics  sciot oscti ctsoi toics 27 travel levrt rletv  etlrv trvel 

27 bundle  eldub uelbd lbeud budle 27 cousin nisoc onics  icnos cosin 

28 python  nohyp ynoph opnyh pyhon 28 during gniud ugndi  ndgui duing 

28 serial  laies elasi aslei seial 28 places seclp lsepc  epslc plces 

29 judges  seguj usejg ejsug juges 29 forest tseof otsfe  sftoe foest 

29 anchor  rohna nroah oarnh anhor 29 public cilup ucipl  ipcul pulic 

30 shovel  levhs hlesv eslhv shvel 30 social laios olasi  asloi soial 

30 wizard  draiw idrwa rwdia wiard 30 number rebun urenb  enrub nuber 

31 kidney  yenik iyekn ekyin kiney 31 signal lanis ilasn  aslin sinal 

31 mortal  latom olamt amlot motal 31 object tcebo btcoe  cotbe obect 

32 lockup  pukol opulk ulpok lokup 32 junior roiuj uroji  ojrui juior 

32 adverb  breda dbrae rabde aderb 32 sample elpas aelsp  lseap saple 

 

 

Note. The numbers indicate which items were yoked to create control conditions (e.g., sdwrc 

was the 0-Bigram control for KNIGHT). Targets appeared in uppercase in the experiments. 



www.manaraa.com

 88 

REFERENCES 

Balota, D., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., Neely, J. H., 

 et al. (2007). The English lexicon project. Behavior Research Methods, 39, 445-459. 

Bowers, J. S., Davis, C. J., & Hanley, D. A. (2005). Automatic semantic activation of 

 embedded words: Is there a “hat” in “that”? Journal of Memory and Language, 52, 

 131-143. 

Breitmeyer, B. G. (1984). Visual masking: An integrative approach. Oxford, UK: Oxford 

 University Press.  

Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic 

 interactive environment for designing psychology experiments. Behavioral Research 

 Methods, Instruments and Computers, 25, 257-271.  

Coltheart, M., Rastle, K., Perry, C., Ziegler, J. & Langdon, R. (2001). DRC: A dual route 

 cascaded model of visual word recognition and reading aloud. Psychological Review, 

 108, 204-256.  

Davis, C. J. (1999). The self-organising lexical acquisition and recognition (SOLAR) model 

 of visual word recognition. Unpublished doctoral dissertation. University of New 

 South Wales, Australia.   

Davis, C. J. (2003). Factors underlying masked priming effects in competitive network 

 models of visual word recognition. In S. Kinoshita & S. J. Lupker (Eds.), Masked 

 priming: The state of the art (pp. 121-170), Hove, England: Psychology Press.  

Davis, C. J. & Bowers, J. S. (2006). Contrasting five theories of letter position coding. 

 Journal of Experimental Psychology: Human Perception & Performance, 32, 535-

 557.  



www.manaraa.com

 89 

Davis, C. J. & Lupker, S. J. (2006). Masked inhibitory priming in English: Evidence for

 lexical  inhibition. Journal of Experimental Psychology: Human Perception and 

 Performance,  32, 668-687.  

Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: 

 Basic evidence and a workspace framework. Cognition, 79, 1-37.  

Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. 

 Proceedings of the National Academy of Sciences of the United States of America, 93, 

 13494-13499.  

Forster, K. I. (1987). Form-priming with masked primes: The best match hypothesis. In M. 

 Coltheart (Ed.), Attention and performance XII (pp. 127-146). Hillsdale, NJ: Erlbaum.  

Forster, K. I. (1998). The pros and cons of masked priming. Journal of Psycholinguistic 

 Research, 27, 203-233.  

Forster, K. I. & Davis, C. (1984). Repetition priming and frequency attenuation in lexical 

 access. Journal of Experimental Psychology: Learning, Memory and Cognition, 10, 

 680-698.  

Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position 

 coding. Psychological Review, 115, 577-600.  

Grainger, J. (2008). Cracking the orthographic code: An introduction. Language and 

 Cognitive Processes, 23, 1-35.  

Grainger, J., Granier, J. P., Farioli, F., Van Assche, E., & van Heuven, W. (2006). Letter 

 position information and printed word perception: The relative-position priming 

 constraint. Journal of Experimental Psychology: Human Perception and 

 Performance, 32, 865-884.  



www.manaraa.com

 90 

Grainger, J. & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A 

 multiple read-out model. Psychological Review, 103, 518-565. 

Grainger, J. & Jacobs, A. M. (1999). Temporal integration of information in orthographic 

 priming. Visual Cognition, 6, 461-492.  

Grainger, J. & van Heuven, W. J. B. (2003). Modeling letter position coding in printed word 

 perception. In P. Bonin (Ed.), The Mental Lexicon. New York: Nova Science 

 Publishers (pp. 1-24).  

Guerrera, C. & Forster, K. I. (2008). Masked form priming with extreme transposition. 

 Language and Cognitive Processes, 23, 117-142.  

Kinoshita, S. & Norris, D. (2009). Transposed-letter priming of pre-lexical orthographic 

 representations. Journal of Experimental Psychology: Learning, Memory, and 

 Cognition, 35, 1-18.    

Kuĉera, H. & Francis, W. N. (1967). Computational analysis of present-day American 

 English. Providence, RI: Brown University. 

McClelland, J. L. & Rumelhart, D. E. (1981). An interactive activation model of context 

 effects  in letter perception: Part 1. An account of basic findings. Psychological 

 Review, 88, 375-407.  

Morris, A. L., & Still, M. L. (2008). Now you see it, now you don’t: Repetition blindness for 

 nonwords. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

 34, 146-166.  

Morris, A. L., & Still, M. L. (2009). The length effect in visual word recognition. Manuscript 

 in preparation. 



www.manaraa.com

 91 

Morris, A. L., Still, M. L., & Caldwell-Harris, C. L. (2009). Repetition blindness: An 

 emergent property of inter-item competition. Cognitive Psychology, 58, 338-375.  

Nakayama, M., Sears, C. R., & Lupker, S. J. (2008). Masked priming with orthographic 

 neighbors: A test of the lexical competition assumption. Journal of Experimental 

 Psychology: Human Perception and Performance, 34, 1236-1260.  

Perea, M., Duñabeitia, J. A., & Carreiras, M. (2008). Transposed-letter priming effects for 

 close versus distant transpositions. Experimental Psychology, 55, 397-406.  

Perea, M., & Lupker, S. J. (2003). Transposed-letter confusability effects in masked form 

 priming. In S. Kinoshita & S. J. Lupker (Eds.). Masked priming: State of the art (pp. 

 97-120). Hove, UK: Psychology Press. 

Peressotti, F. & Grainger, J. (1999). The role of letter identity and letter position in 

 orthographic priming. Perception & Psychophysics, 61, 691-706.  

Rastle, K., Harrington, J., & Coltheart, M. (2002). 358,534 nonwords: The ARC Nonword 

 Database. Quarterly Journal of Experimental Psychology, 55A, 1339-1362. 

Rayner, K. (1975). The perceptual span and peripheral cues during reading. Cognitive 

 Psychology, 7, 65-81.  

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of 

research. Psychological Bulletin, 124, 372-422.  

Ringo, J. L. (1996). Stimulus specific adaptation in inferior temporal and medial temporal 

cortex of the monkey. Behavioral Brain Research, 76, 191-197.  

Rumelhart, D. E. & McClelland, J. L. (1982). An interactive activation model of context 

effects in letter perception: Part 2. The contextual enhancement effect and some tests 

and extensions of the model. Psychological Review, 89, 60-94.  



www.manaraa.com

 92 

Schoonbaert, S. & Grainger, J. (2004). Letter position coding in printed word perception: 

 Effects of repeated and transposed letters. Language and Cognitive Processes, 19, 

 333-367.  

Segui, J., & Grainger, J. (1990). Priming word recognition with orthographic neighbors: 

Effects of relative prime-target frequency. Journal of Experimental Psychology: 

Human Perception and Performance, 16, 65-76.  

Still, M. L., & Morris, A. L. (2007, November). Dissociative Effects of Prime Duration, 

Lexicality, and Word Frequency in Lexical Decision. Poster presented at the Annual 

Meeting of the Psychonomic Society, Long Beach, CA. 

Still, M. L., & Morris, A. L. (2008, November). Opposing Contributions of Letters and 

Bigrams in Word Recognition? Poster presented at the Annual Meeting of the 

Psychonomic Society, Chicago, IL. 

Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The 

 SERIOL model and selective literature review. Psychonomic Bulletin & Review, 8, 

 221-243.   

Whitney, C. & Cornelissen, P. (2008). SERIOL reading. Language and Cognitive  

  

 Processes, 23, 143-164. 

 

Williams, C. C., Perea, M., Pollatsek, A., & Rayner, K. (2006). Previewing the 

 neighborhood: The role of orthographic neighbors as parafoveal previews in reading. 

 Journal of Experimental Psychology: Human Perception and Performance, 32, 1072-

 1082.  


	2009
	Identifying the contributions of letter identity and relative letter position to orthographic priming
	Mary Lynn Still
	Recommended Citation


	Microsoft Word - MLS_Dissertation.doc

